Evidence-based renewal of the Italian guidelines for the use of antiretroviral agents and the diagnostic-clinical management of HIV-1 infected persons

Andrea Antinori¹, Antonio Di Biagio², Simone Marcotullio³, Loredana Sarmati⁴, Massimo Andreoni⁴, Gioacchino Angarano⁵, Antonio Chirianni⁶, Antonella d’Arminio Monforte⁷, Giovanni Di Perri⁸, Massimo Galli⁹, Nicola Gianotti¹⁰, Enrico Girardi¹¹, Andrea Gori¹², Cristina Mussini¹³, Carlo-Federico Perno¹⁴, Adriano Lazzarin¹⁵

for the Italian HIV Guidelines Working Group*

¹National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy; ²Policlinico San Martino Hospital, IRCCS for Cancer Research Genova, Italy; ³Nadir Onlus, Rome, Italy; ⁴University of Tor Vergata, Rome, Italy; ⁵University of Bari, Italy; ⁶P.O. Cotugno, AORN Ospedali dei Colli, Naples, Italy; ⁷San Paolo Hospital, University of Milan, Italy; ⁸University of Turin, Italy; ⁹University of Milan, Italy; ¹⁰Division of Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy; ¹¹National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy; ¹²Policlinico Ca Granda Hospital, University of Milan, Italy; ¹³University of Modena and Reggio Emilia, Modena, Italy; ¹⁴University of Milan - ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁵San Raffaele Scientific Institute, Milan, Italy

*All members of the Italian HIV Guidelines Working Group are listed in the acknowledgment section.

INTRODUCTION

This publication summarizes the latest updates to the 2017 version of the Italian Guidelines for the management and the use of antiretroviral drugs (Antinori et al., New Microbiol 2017) with the chapter related to HIV treatment notably revised in comparison to previous version. The implementation of a new method for drafting the guidelines was made necessary following the publication of the Law No 24 of 8 March 2017 (http://www.gazzettaufficiale.it/eli/id/2017/03/17/17G00041/sg). The objective of this new regulation is the harmonization of the relationship between doctors and patients, through the approval of the new National System Guidelines. The law also suggests to align guidelines to internationally recognized standards; as a result, the new recommendations were released using the Population, Intervention Comparator Outcome (PICO) methodology and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Diagnostic tools for immunological and virological monitoring, when to start, what to start, optimization and therapeutic failure were updated in order to include the recommendation obtained with these newly developed methods. For a complete review of clinical and therapeutic relevant topics we refer the reader to the extended version of the Guidelines.

Key words: Antiretroviral therapy; HIV; Treatment guidelines.

Received October 19, 2018
Accepted October 19, 2018
This is a short version of the full text Italian Guidelines for the use of antiretroviral drugs and the diagnostic-clinical management of people with HIV-1 infection. This version should not be considered completely exhaustive with respect to the full text version of the Guidelines. For a complete review of clinical and therapeutic relevant topics such as continuum of care, management of comorbidities, as well as populations (elderly, women, immigrants, children), conditions (drug and/or alcohol addiction, detention), and situations (transplants) requiring special attention we refer the reader to the extended version of the Guidelines. Similarly, while references cited herein refer only to the current update, a complete review of literature is available in the extended version of the Guidelines (HIV/AIDS Italian Expert Panel 2017).

METHODOLOGY

Based on the PICO methodology, (Guyatt et al., 2011) and the GRADE system, the HIV Guidelines Working Group decided to adopt a shared and univocal framing of clinical questions, specifying, for each question, the patient population, the intervention of interest, the comparator, and the outcomes of interest. The topics were selected based on the analysis of the scientific literature and the comparison with other Guidelines. Clinical needs and questions have been identified analysing the controversial areas, in which the identification of reference criteria and recommendations, according to the principles of evidence-based medicine, are pivotal for the clinical decisions. The literature review was based on a search strategy for English-language articles in PubMed. Randomized controlled trials (RCTs), retrospective or prospective cohort studies with a control (concurrent or historical group) and the abstracts from the last two years International conferences were included. A modified frame from DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents was used to assess the strength of the recommendations (Table 1) (DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents 2014). Ratings were discussed and approved by the entire Panel according the usual rules.

DIAGNOSTIC TOOLS FOR VIROLOGICAL AND IMMUNOLOGICAL MONITORING

Virology

The burden of plasma HIV-RNA (viremia or viral load) is a surrogate marker that allows to predict the risk of clinical progression of the infection (prognostic marker) and evaluate the extent of the therapeutic response (Mellors et al., 1996). Recent studies have highlighted a new unit of measurement, defined as “HIV-RNA copies produced per year” (HIV viremia copy-years), which corresponds to the area under the curve of longitudinal viremia values, and represents the cumulative amount of virus circulating in the organism within the indicated time frame. The achievement of permanently undetectable viremia is the goal of ART.

Integrate genotypic resistance test

Given the widespread use of integrate inhibitors (INI) in clinical practice and the different genetic barrier of these drugs, the characterization of the integrate gene becomes particularly useful, not only at the time of failure, but also at the beginning of therapy with this class of drugs. In this regard, an increase in the prevalence of resistance to integrate inhibitors has been observed in recent years in patients treated with antiretroviral therapy (Lepik et al., 2017). In addition, cases of transmission of strains resistant to these drugs begin to be reported (Menza et al., 2017; Hurt et al., 2011; Hernandez et al., 2017). Finally, the high prevalence of polymorphisms potentially associated with INI resistance in newly diagnosed patients (Casadella et al., 2017)

Table 1 - Rating scheme for degree of recommendation (a) and level of evidence (b).

<table>
<thead>
<tr>
<th>a) Degree of recommendation</th>
<th>b) Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Highly recommended</td>
<td>Level I The data are obtained from at least one controlled, randomized study with sufficient power or from a meta-analysis of controlled studies.</td>
</tr>
<tr>
<td>B Moderately recommended</td>
<td>Level II The data are collated from non-randomized studies or from cohort observational studies.</td>
</tr>
<tr>
<td>C Optional</td>
<td>Level III Recommendation based on case reviews or agreement among experts.</td>
</tr>
</tbody>
</table>

Table 2 - Management of genotypic resistance test in treatment naive patients.

VIROLOGY

Protease and reverse transcriptase

- Q.1 Is there any advantage in performing a genotypic resistance test in all naive patients? R.1 genotypic resistance tests (GRT) in HIV-infected patients naive is always recommended [AII]
- Q.2 Is there any advantage to perform a genotypic resistance test in all patients with virological failure? R.2 GRT in HIV infected patients with virological failure is always recommended [AII]

Integrate

- Q.3 Is there any benefit in assessing INI resistance test in HIV-infected patients naive to therapy? R.3 INI resistance test is recommended in naive patients [BIII]
- Q.4 Is there any benefit in assessing INI resistance in HIV-infected patients who start first-line regimens or other regimens containing INI? R.4 INI resistance test is recommended in all patients starting an INI-based regimen [AIII]
- Q.5 Is there any benefit in assessing INI resistance in HIV-infected patients who failed an INI regimen? R.5 INI resistance test is always recommended in all HIV-infected patients who failed INI based regimen [AI]

Evidence-based renewal of the Italian guidelines for the use of antiretroviral agents and the diagnostic-clinical management of HIV-1 infected persons

Table 3 - Management of CD4+ in HIV-infected patients.

<table>
<thead>
<tr>
<th>IMMUNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.1 Is the monitoring of the absolute number of CD4+ T cells associated with the percentage value of CD4+ T cells and the CD4/CD8 ratio a better indicator of immunological recovery than the monitoring of the CD4+ T cells count alone?</td>
</tr>
<tr>
<td>R.1 The absolute number of CD4+ T cells is currently the most validated prognostic immunological marker, as it is the strongest predictor of clinical progression (AIDS and non-AIDS events). It allows to determine the indication at the beginning or the suspension of the prophylaxis for opportunistic infections. [A1].</td>
</tr>
<tr>
<td>Q.2 In which clinical context the association of the above mentioned markers can provide a real advantage?</td>
</tr>
<tr>
<td>R.2 The percentage value of CD4+ T cells and the CD4CD8 ratio should be evaluated in conjunction with the CD4+ T cell absolute count in order to obtain a better estimate of the immune system function, especially in patients with a risk of poor CD4+ T cell count recovery. (low CD4+ nadir, co-infections) [AII].</td>
</tr>
<tr>
<td>Q.3 It is believed that, in patients treated with ART and HIV-RNA <50 cp/μl and steady CD4+<500 cells/μl, monitoring frequency of CD4+T cell counts may be delayed and measured with intervals> 6 months [BII]</td>
</tr>
<tr>
<td>R.3 In ART treated patients with stable HIV-RNA <50 cp/μl and steady CD4+>500 cells/μl, monitoring frequency of CD4+T cell counts may be delayed and measured with intervals> 6 months [BII]</td>
</tr>
</tbody>
</table>

indicates the usefulness of carrying out integrase resistance testing even in naïve patients in order to monitor the possible emergency of transmitted resistance to INI (Table 2).

Immunology
The CD4+ T cell counts are the only validated immunological diagnostic marker in randomized controlled trials. Despite several non-randomized and cohort studies tried to identify additional immunological markers (e.g CD4/CD8 ratio), no other marker has been currently validated in the clinical management of HIV-1 infected patients. In subjects not treated with ART, CD4+T cell counts are reduced by about 4% per year. In response to therapy, a 50-100 cells/μL/year increase in the number of CD4+T cells is obtained (Kaufmann et al., 2003). However, in a considerable proportion of subjects (about 25%), called immunological non-responders (INRs), this increase may be of a lower or variable extent (Gazzola et al., 2009). Indicatively, a count CD4+T cells lower than 200 cells/μL as well as a percentage of CD4+T cells below 14% are associated with an increased risk of opportunistic infections (Table 3) (Ledergerber et al., 2004; Gourlay et al., 2012).

CLINICAL GUIDELINES:
ANTIRETROVIRAL THERAPY

When to start
The decision when to start ART has to take in account multiple factors that concern both the health of the HIV-infected patient, in the short and long term, and the role of ART in reducing the transmission of infection itself, also aiming at containing the epidemic (TasP, Treatment as Prevention). It is for these reasons that is strongly recommended to provide ART to all people infected with HIV [AI]. It is specified that, to avoid the transmission of HCV to the partner, this panel recommends, nevertheless, the use of condoms in case of anal intercourse in subjects with active HIV/HCV co-infection [AII] (Table 4) (Foster A. et al., 2016).

Opportunistic infections
In the course of opportunistic infection (OI), although the beginning of ART is always recommended, it is preferable to respect some deadlines (Table 5).

What to start?
First Line ART
The choice of a specific ART must be based on patients’ individual needs.

The major advantage of the backbones comprising TDF, compared to the ones including ABC, lies in the fact that they do not require testing for the presence of HLA-B57 01 and that they have a greater antiviral activity and genetic barrier against HBV.

Furthermore, the initial (first 6 months) use of ABC has been correlated with increased risk of myocardial infarction in subjects with high cardio vascular risk (Sabin et al., 2008; SMART/INSIGHT and the D:A:D Study Groups et

Table 4 - When to start antiretroviral treatment.

<table>
<thead>
<tr>
<th>WHEN TO START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute infection</td>
</tr>
<tr>
<td>Q.1 Is there any advantage in starting ART before the results of genotypic resistance tests for HIV and HLA-B5701 in HIV infected patients with an acute infection?</td>
</tr>
<tr>
<td>R.1 Immediate initiation of ART is recommended without waiting for the results [AII].</td>
</tr>
<tr>
<td>Chronic infection</td>
</tr>
<tr>
<td>Q.1 Is there any benefit in starting ART in HIV-infected naïve patients with CD4+>500 cells/μl compared to waiting to start when the CD4+ count is <500 cells/μl?</td>
</tr>
<tr>
<td>R.1 ART should be initiated in all subjects, regardless of the CD4+ cell count [AI]</td>
</tr>
</tbody>
</table>

Rationale
The studies indicate that ART is associated with a clinical benefit on progression to AIDS or even death in subjects with CD4+>500 cells/μl lymphocytes; early beginning of ART is also associated with an improved quality of life.

A further benefit of early ART initiation is a reduction in transmission of HIV.

al., 2008). On the other hand, ABC, compared to TDF, offers the advantage of the possibility to be used in subjects with advanced renal insufficiency, without requiring dose adjustments (Table 6, 7, 8) (Sax et al., 2009; Sax et al., 2011; Daar et al., 2011; McComsey et al., 2011; Post et al., 2010; Moyle et al., 2013; Smith et al., 2009; Fabbiani et al., 2014; Walmsley et al., 2013; Orrell et al., 2017; Walmsley et al., 2015; Wohl et al., 2016; Arribas et al., 2017; Gallant et al., 2017; Bedimo et al., 2016; Costarelli et al., 2016; Winston et al., 2017).

Table 5 - When to start ART in a patient with an opportunistic infection.

<table>
<thead>
<tr>
<th>Opportunistic Infections</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.1 Is there any benefit to starting immediately ART in HIV-infected naïve patients with Pneumocystis jiroveci pneumonia compared to waiting to start at the end of pneumonia treatment?</td>
<td>R.1 AIDS patients with Pneumocystis jiroveci must start ART within 2 weeks of diagnosis.</td>
</tr>
<tr>
<td>Q.2 Is there any benefit to starting immediately ART in HIV-infected naïve patients with pulmonary TB compared to waiting to start 15 days after starting TB therapy?</td>
<td>R.2 In AIDS patients with pulmonary TB ART should be started within 2 weeks from the start of TB therapy when CD4+ is <50 cell/mm3, and within 8 weeks form start anti-TB therapy in all co-infected HIV/TB patients [AII]</td>
</tr>
<tr>
<td>Q.3 Is there any benefit to starting immediately ART in AIDS patients with TB meningitis compared to waiting the end of antibiotic treatment for TB?</td>
<td>R.3 In AIDS patients with TB meningitis ART should be started at the end of induction phase of TB treatment [AII]</td>
</tr>
<tr>
<td>Q.4 Is there any benefit to starting immediately ART in AIDS patients with cryptococcal meningitis compared to waiting the end of antibiotic treatment?</td>
<td>R.4 In AIDS patients with cryptococcal meningitis, ART should be started at the end of induction therapy [AII]</td>
</tr>
</tbody>
</table>

References for the table above: Torok et al., 2011; Makadzange et al., 2010; Bouwware et al., 2014; Bicanic et al., 2009.

Table 6 - First line ART: the choice of backbones.

FIRST LINE ART

<table>
<thead>
<tr>
<th>Recommended regimen options</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.1 What are the best two nucleoside reverse transcriptase inhibitors (NRTIs) to start therapy in terms of efficacy and tolerability in naïve HIV-infected patients?</td>
<td>R.1 In naïve HIV-infected patients, it is recommended to initiate therapy with regimens containing a tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) [AI] or tenofovir alafenamide (TAF)/FTC [AI] or, limited to the combination with dupilugravir, abacavir (ABC)/lamivudine (3TC) [AI].</td>
</tr>
<tr>
<td>Q.2 Does ART with at least three antiretroviral principles active in a single tablet (3D-STR) offer advantages in terms of efficacy, quality of life and adherence compared to therapeutic regimens with the same 3 active drugs, but with multiple tablets (3D-MTR) as initial therapy in HIV-infected naïve patient?</td>
<td>R.2 In the initial therapy an antiretroviral regimen with at least three active ingredients in a single tablet (STR) has advantages in terms of adherence [BII] (AII for regimens with NNRTI) and efficacy [BII] (AII for NNRTI regimens)</td>
</tr>
<tr>
<td>Q.3 Is the Dual Therapy (two different active antiretrovirals) an effective therapeutic option compared to ART with three active antiretroviral principles in HIV-infected naïve patients?</td>
<td>R.3 Dual therapy cannot be currently considered a therapeutic option similar to ART with three active drugs in terms of efficacy, and is therefore not recommended for the initiation of therapy in HIV-infected naïve patients [AII]</td>
</tr>
<tr>
<td>Q.4 Does the addition of a fourth drug to an ART regimen composed of at least three active antiretroviral principles, offers advantages in terms of therapeutic efficacy in HIV-infected naïve patients with chronic infection and with HIV-RNA >500,000 cp/mL?</td>
<td>R.4 The addition of a fourth drug does not offer documented benefits over an ART regimen with three active ingredients and is therefore not recommended for initiation of therapy in the chronically infected patient [AII].</td>
</tr>
<tr>
<td>Q.5 Does the addition of a fourth drug to an ART regimen composed of at least three active antiretroviral principles offer advantages in terms of therapeutic efficacy in treatment of HIV-infected naïve patients with acute infection?</td>
<td>R.5 During acute infection the addition of a fourth drug does not offer documented benefits compared to an ART with three active drugs [AII]</td>
</tr>
</tbody>
</table>

References for the above table: Orell et al., 2017; DeJesus et al., 2012; Eron et al., 2017; Molina et al., 2014; Cohen et al., 2014; Mills et al., 2015; Wohl et al., 2016; Astuti et al., 2014; Colombo et al., 2013; Engsig et al., 2014; Taneja et al., 2012; Fabbiani et al., 2016; Brunetta et al., 2015; Colombo et al., 2013; Homar et al., 2012; Rockstroh et al., 2013; Lemoine et al., 2014; Cahn et al., 2017; Sax et al., 2012; DeJesus et al., 2012; Segura et al., 2016; Gallant et al., 2013; Gallant et al., 2015; Tashima et al., 2014; Mills et al., 2015; Eron et al., 2017; Cohen et al., 2013; Molina et al., 2011; Cohen et al., 2012; Cohen et al., 2014; Cohen et al., 2011; Nelson et al., 2013; Sax et al., 2015; Molina et al., 2015; Daar et al., 2011; Kulkarni et al., 2017; Rhee et al., 2015; Andrews et al., 2017; Slama et al., 2016; Dutreix et al., 2017; Stein et al., AIDS, 2015; Arkai et al., 2012; Crazan et al., 2013; Rafii et al., 2014; Lambert-Nicol et al., 2016; Bernardino et al., 2015; Cahn et al., 2014; Stella et al., 2016; Sued et al., 2017; Cahn et al., 2017; Taiwo et al., 2017; Crowell et al., 2016; Valcour, et al., 2015; Ostrowski et al., 2015; Chéret et al., 2015; Markowitz et al., 2014. |
Evidence-based renewal of the Italian guidelines for the use of antiretroviral agents and the diagnostic-clinical management of HIV-1 infected persons

Treatment optimization

The main aims of therapeutic optimization are: overcoming an ongoing toxicity (reactive switch); preventing predictable toxicity (preventive or proactive switch); promoting adherence by safely reducing the number of tablets or doses; addressing unfavourable drug interactions. The therapeutic schemes listed in Table 9 represent the reference frame and every modification of the regimen must always consider the following priorities: maintaining virological suppression, and ensuring, with reasonable certainty, that the potential benefits for the patient outweigh the potential risks (the switch must ultimately be an advantage for the individual patient) (Table 9).

Therapeutic failure

The current availability of powerful and well tolerated antiretroviral drugs of various classes allows to set up long-lasting therapeutic regimens in the vast majority of patients. However, therapeutic failure due to the presence of a sub-optimal virological response (virological failure), unsatisfactory immunological response (immunological failure), as well as, to a lesser extent, clinical progression

Table 8 - Antiretroviral regimens recommended for starting ART.

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Degree of recommendation/ Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDF/FTC+RAL</td>
<td>[AI]</td>
</tr>
<tr>
<td>TAF/FTC+RAL</td>
<td>[AI]</td>
</tr>
<tr>
<td>TAF/FTC/EVG/COBI</td>
<td>[AI]</td>
</tr>
<tr>
<td>TDF/FTC+DTG</td>
<td>[AI]</td>
</tr>
<tr>
<td>TAF/FTC+DTG</td>
<td>[AI]</td>
</tr>
<tr>
<td>ABC/3TC+DTG or ABC/3TC/DTG</td>
<td>[AI]</td>
</tr>
<tr>
<td>TDF/FTC/RPV (for patients with HIV-RNA <100,000 copies/mL and T CD4+ count >200 cells/μl)</td>
<td>[AI]</td>
</tr>
<tr>
<td>TAF/FTC/RPV for patients with HIV-RNA <100,000 cp/mL and T CD4+ count >200 cells/μl)</td>
<td>[AII]</td>
</tr>
</tbody>
</table>

Recommended regimen options (for all conditions)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Degree of recommendation/ Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAF/FTC+ATV+r or TAF/FTC+DRV+r (Recommended in individuals with uncertain adherence or in patients who need to begin treatment before resistance testing results are available, or for therapy initiation in pregnant patients)</td>
<td>[AII]</td>
</tr>
<tr>
<td>TAF/FTC+ATV/COBI or TAF/FTC+DRV/COBI (recommended in individuals with uncertain adherence or in patients who need to begin treatment before resistance testing results are available)</td>
<td>[AII]</td>
</tr>
</tbody>
</table>

Table 9 - Antiretroviral regimens recommended for treatment optimization.

Treatment optimization

Q.1 In patients effectively treated with ART based on three active drugs in multiple tablets, does the switch to regimens that include ART with 3 drugs in a STR improve duration of the virological response, adherence and/or quality of life?

R.1 Switching to a STR improves adherence in observational studies; no randomized trials addressed this issue; however, some STR improves quality of life and patients satisfaction [BII]. In terms of virological response the switch to STR proved to be not inferior to the standard regimen.

Q.2 In patients treated with ART based on three active drugs, does the switch to a dual therapy maintain virological response, reduce toxicity and improve tolerability?

R.2 Virological suppression can be maintained with the switch to some regimens: 1. DTG+RPV [AI]; 2. ATV/r+3TC, DRV/r+3TC [AI for switches from boosted PIs, BI for switches from other regimens]; 3. DRV/r+RAL, DRV/r + RPV [CI]; 4. DTG+3TC [BII].

Q.3: In patients treated with ART based on three active drugs, does the switch to monotherapy with a boosted PI or DTG maintain the virological suppression, reduce toxicity and improve tolerability?

R.3 The switch study from three active drugs to one single drug demonstrated insufficient control of HIV replication. DRV/r mono therapy [CI]. DTG mono therapy must be avoided [AI].

Q.4 In patients treated with PI-based or NNRTI-based ART with three active drugs, does the switch to an INSTI or to a RPV-based regimen maintain virological suppression, reduce toxicity, improve tolerability and modify drug-drug interactions?

R.4 The following switches from a boosted PI are recommended: RPV [AI], EVG/OBI/FTC/TDF [AI]; DTG [AI]. Also the switch from NNRTIs to an INSTI or RPV is recommended [AI]. In contrast, the switch from a boosted PI to MVC is optional [CI], and the switch from a boosted PI to RAL is recommended with caution [BI].

Q.5 In patients treated with three active drugs including TDF/FTC, does the switch to ABC/3TC- or from TDF to TAF maintain the virological suppression, reduce toxicity, improve tolerability and modify drug-drug interactions?

R.5 Switch from TDF/FTC based regimen to ABC/3TC - or TAF/FTC based regimen maintain virological suppression and reduces renal and bone toxicity [AI]. Caution is recommended for patients at risk for cardiovascular events [AI].

References to the above table: Airoldi et al. 2010; Raffi et al. 2015; Sterrantino et al. 2012; Molina et al. 2015; Walmsley et al. 2015; Palella et al. 2014; Arribas et al. 2017; Trottier et al. 2017.
Table 10 - Management of antiretroviral failure.

Therapeutic failure

Q.1 Is the genotypic resistance tests (GRT) useful during ART in patients with low level viremia failure? R.1 GRT is recommended in all patients before starting therapy and in all patients with virological failure [AI]. GRT in patients with low level viremia has proved to be reliable, also for the integrase enzyme [AII].

Q.2 Is the determination of the Therapeutic Drug Monitoring (TDM) for drugs used in patients in virological failure indicated in absence of resistance mutations? R.2 The determination of the TDM for the drugs in use, even with the limitations inherent the execution and interpretation of the test, is a useful complement to the choice of the subsequent regimen and is therefore recommended [BII].

Q.3 Is the enhancement of ART with a fourth drug indicated in patients with frequent viral blip? R.3 Intensification with a fourth drug in patients with frequent viral blip is not recommended [AII]

Q.4 Is simplification strategy advisable in patients with history of virological failure? R.4 In these populations it is recommended a simplification with high genetic barrier drugs [BII].

(clinical failure) still occur in a non-negligible proportion of patients (Table 10).

List of abbreviations

3TC: lamivudine; ABC: abacavir; ATV/r: ritonavir boosted atazanavir; ART: combined antiretroviral therapy; COBI: cobicistat; DTG: dolutegravir; DRV/r: ritonavir boosted darunavir; EVG: elvitegravir; FDC: fixed dose combinations; FTC: emtricitabine; NNRTI: Nucleoside Reverse Transcriptase Inhibitor; RTV: ritonavir; RPV: ritonavir; STR: single tablet regimen; TAF: tenofovir alafenamide; TDF: tenofovir disoproxil fumarate.

Acknowledgments

Institutional referees: Galli Massimo, Università degli Studi di Milano; Chirianni Antonio, Azienda Ospedaliera D. Cotugno, Napoli.

Coordinators: Andreoni Massimo, Università degli Studi di Roma Tor Vergata, Roma; Antinori Andrea, Istituto Nazionale Malattie Infettive L. Spallanzani, Roma; Arminio Monforte Antonella, Università degli Studi di Milano; Di Perri Giovanni, Università degli Studi di Torino; Lazzarin Adriano, Università Vita-Salute San Raffaele, Milano.

Executive committee: Angarano Gioacchino, Università degli Studi di Bari; Di Biagio Antonio, Ospedale Policlinico San Martino, Genova; Perno Carlo-Federico, Università degli Studi di Milano - ASST Grande Ospedale Metropolitano Niguarda, Milano; Puoti Massimo, Azienda Ospedaliera Università Ospedale Niguarda Ca’ Granda, Milano; Rizzardini Giuliano, ASST Fatebenefratelli Sacco, Milano.

Editorial coordinators: Di Biagio Antonio, Ospedale Policlinico San Martino, Genova; Marcontullio Simone, Nadir Onlus, Roma.

Italian HIV Guidelines Working Group: Ammassari Adriana, Istituto Nazionale Malattie Infettive L. Spallanzani, Roma; Angarano Gioacchino, Università degli Studi di Bari; Antinori Andrea, Istituto Nazionale Malattie Infettive L. Spallanzani, Roma; Armignacco Orlando, Ospedale Belcolle, Viterbo; Babudieri Sergio, Università degli Studi di Sassari; Bini Teresa, Azienda Ospedaliera, Polo Universitario San Paolo, Milano; Bonfanti Paolo, ASST di Lecco, O.A. Manzoni, Lecco; Bonora Stefano, Università degli Studi di Torino; Borderi Marco, Azienda Ospedaliera Sant’Orsola Malpighi, Bologna; Breviglieri Michele, Arcigay, Verona; Bruno Raffaele, Policlinico San Matteo, Pavia; Calza Leonardo, Università di Bologna; Capobianchi Maria Rosaria, Istituto Nazionale Malattie Infettive L. Spallanzani, Roma; Cagarelli Roberto, Regione Emilia-Romagna, Prevenzione Collettiva e Sanità Pubblica, Bologna; Calcagno Andrea, Università degli Studi di Torino; Castagna Antonella, Ospedale San Raffaele, Milano; Castelli Francesca, Università degli Studi di Brescia; Cattelan Anna Maria, Azienda Ospedaliera-Università, Padova; Cauda Roberto, Università Cattolica del Sacro Cuore, Roma; Cingolani Antonella, Università Cattolica del Sacro Cuore, Roma; Cinque Paola, Ospedale San Raffaele, Milano; Corbelli Giulio Maria, Plas Onlus, Bologna; d’Arminio Monforte Antonella, Università degli Studi di Milano; Ettorre Gabriella, Università degli Studi di Roma La Sapienza, Roma; De Carli Gabriella, Istituto Nazionale Malattie Infettive L. Spallanzani, Roma; De Luca Andrea, Azienda Ospedaliera Universitaria, Siena; Università Cattolica del Sacro Cuore, Roma; Di Biagio Antonio, Ospedale Policlinico San Martino, Genova; Di Perri Giovanni, Università degli Studi di Torino; Di Pietro Massimo, Azienda Sanitaria di Firenze; El Hamad Issa, Azienda Ospedaliera Spedali Civili, Brescia; Errico Margherita, NPS Italia Onlus, Milano; Gaeta Giovanni Battista, II Università di Napoli; Gargiulo Miriam, Azienda Ospedaliera D. Cotugno, Napoli; Gervasoni Cristina, ASST Fatebenefratelli Sacco; Giacone Giannini, Università degli Studi di Modena e Reggio Emilia, Regione Emilia-Romagna, Prevenzione Collettiva e Sanità Pubblica, Bologna; Gianotti Nicola, Università di Milano-Bicocca, Monza; Grossi Paolo, Università degli Studi dell’Insabria, Varese; Guarnieri Giovanni, Università degli Studi di Modena e Reggio Emilia, Regione Emilia-Romagna, Prevenzione Collettiva e Sanità Pubblica, Bologna; Lichtner Miriam, Sapienza Università di Roma Polo Pontino, Roma; Liuzzi Giuseppina, Istituto Nazionale Malattie Infettive L. Spallanzani, Roma; Lo Caputo Sergio, Policlinico di Bari; Madeddu Giordano, Università degli Studi di Sassari; Maggi Paolo, Policlinico di Bari; Maggiolo Franco, Ospedali Riuniti di Bergamo; Marchetti Giulia, Università degli Studi di Milano; Marcontullio Simone, Nadir Onlus, Roma; Maserati Renato, Policlinico San Matteo, Pavia; Mastroianni Claudio, Università degli Studi di Roma La Sapienza, Roma; Matteelli Alberto, Università degli Studi di Brescia; Menichetti Francesco, Università degli Studi di Pisa; Mussini Cristina, Università degli Studi di Modena e Reggio Emilia, Modena; Nozza Silvia, Ospedale San Raffaele, Milano; Oldrini Massimo, Lega Italiana per la Lotta contro l’AIDS, Milano; Parruti Giustino, Azienda Sanitaria Locale di Pescara; Pascucci Maria Grazia, Regione Emilia-Romagna, Prevenzione Collettiva e Sanità Pubblica, Bologna; Parrella Roberto, Azienda Ospedaliera D. Cotugno, Napoli; Perno Carlo-Federico;...

fected patients: final 5-year results from STARTMRK. *J Acquir Immune Defic Syndr.* 63, 77-85.

