HIV-1 RNA quantification in CRF02_AG HIV-1 infection: too easy to make mistakes

Paola Tatarelli¹, Lucia Taramasso¹, Antonio Di Biagio¹, Laura Sticchi²,³, Nicola Nigro³, Renata Barresi³, Claudio Viscoli¹, Bianca Bruzzone³

¹Infectious Diseases Unit, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy;
²Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy;
³Hygiene Unit, IRCCS AOU San Martino-IST, Genoa, Italy

Paola Tatarelli and Lucia Taramasso equally contributed to the drafting of the article.

INTRODUCTION

HIV-1 RNA quantitative evaluation is used worldwide as a prognostic marker, to predict the risk of clinical progression of HIV-1 infection, and as an efficacy marker, to monitor therapeutic response (Mellors et al., 1997). Indeed, the aim of combined antiretroviral therapy (cART) is to achieve permanently undetectable HIV-1 RNA. Real-time nucleic acid amplification technologies are currently recommended to detect and measure HIV-1 RNA and gene sequencing techniques are used to perform HIV-1 genotyping analysis (DHHS, 2014). Several automated assays are commercially available. Nevertheless, recent studies have shown discrepancies in viral load estimation among the existing commercial quantitative assays, especially for the quantification of non-B subtype strains (Bourlet et al., 2011; Church et al., 2011). In Europe and the United States the number of patients newly infected by non-B subtypes is increasing (Santoro et al., 2013; Siemieniuk et al., 2013). In Italy, CRF02_AG is one of the most common non-B subtypes (Santoro et al., 2012). Since HIV-1 RNA has major implications in therapeutic choices, clinicians should consider the possibility of discrepant HIV-1 RNA quantifications using different commercial assays while approaching a patient infected by a non-B subtype. Here we report on a primary HIV-1 infection caused by a CRF02_AG in a Caucasian patient, in whom two different real-time PCR assays detected different values of viral load in the same plasma sample.

CASE REPORT

In July 2014, a 48 year-old man developed an acute febrile syndrome accompanied by sore throat, nausea, vomiting, diarrhea and fatigue. He reported a history of unprotected sexual intercourse in the last two months. He was given a two-week empirical antibiotic treatment by his family doctor without clinical improvement. Because of the persistence of symptoms, he was then admitted to our Infectious Diseases Unit in Genoa, Italy. On admission, he was afebrile, alert and cooperative. Physical examination...
showed enlargement of laterocervical, retroperitoneal and inguinal lymph nodes, which had tense-elastic consistency and were mobile. Abdominal examination revealed liver and spleen enlargement, with no other abnormality. Laboratory examinations showed normal blood cell counts and renal function, while liver enzymes were slightly increased (AST 41 U/L, normal value <50 U/L; ALT 96 U/L normal value <50 U/L). Serological tests for mononucleosis-like syndromes were performed. HIV test resulted positive using a fourth generation HIV-1/2 assay (Vironostika®, Bio-Rad). The result was confirmed by another fourth generation HIV-1/2 assay (Genscreen™ ULTRA HIV Ag-Ab, BioMérieux). The result was confirmed by another fourth generation HIV-1/2 assay (Genscreen™ ULTRA HIV Ag-Ab, Bio-Rad). In order to confirm the clinical suspicion of primary HIV-1 infection, an anti-HIV-1 Western Blot (New Lav Blot I, Bio-Rad), avidity test and HIV-1 RNA (Nuclisens EasyQ® HIV-1 2.0, BioMérieux SA) (EQ) were also performed. The Western Blot revealed reactivity to gp160 and a very weak, uncertain positivity to gp120 band; according to the WHO criteria this test resulted indeterminate. The avidity test showed an avidity index of 0.57%; HIV-1 RNA was 6,700 copies/ml; CD4+ cell-count was 523/mm³ (17.1%) with a 0.2 CD4+/CD8+ T-cell ratio. Therefore, according to clinical history and immune-virological results, a primary HIV-1 infection was diagnosed (classified as A1 stage, following CDC classification). A few days later, the HIV-1 genotypic resistance test, obtained using Trugene HIV-1 Genotyping kit (Siemens Health Care Diagnostics), revealed no resistance mutations in the transcriptase gene, but some mutations in the protease gene including L10I, K20I, M36I, and M46I (Table 1). Moreover, the analysis performed with REGA HIV-1 Subtyping Tool - Version 3.0 attributed the HIV-1 sequence to the CRF02_AG recombinant form. At this point all laboratory tests were confirming the clinical impression of a primary HIV-1 infection, thus requiring immediate initiation of cART. Because of his low viral load the patient was put on a single tablet regimen with tenofovir, emtricitabine and rilpivirine (EACS, 2014). However, when the virus was sequenced and identified as a CRF02_AG recombinant form, a second real-time PCR assay was performed on an additional aliquot of the same sample tested with Nuclisens EasyQ®, using the Versant® HIV-1 RNA 1.0 Assay (kPCR) (Siemens HealthCare Diagnostics). This assay revealed a HIV-1 RNA of 230,000 copies/ml. Thus, cART was potentiated by adding an integrase inhibitor. By using kPCR, two weeks later, HIV-1 RNA was 104 copies/ml and after an 18 week course of four-drug cART, the viral load was 38 copies/ml. At the same time points, the EQ assay detected an HIV-1 RNA of 40 copies/ml and undetectable (<10 copies/ml), respectively (Table 2).

DISCUSSION

HIV-1 is characterized by high genetic variability, due to the large number of errors made by the reverse transcriptase enzyme, in a setting of high viral replication and host immunological pressure. The majority of HIV-1 viral forms circulating in Europe belong to the M group, B subtype. However, the number of patients newly infected by non-B subtypes and by HIV-1 CRFs, which result from the recombination of different HIV-1 subtypes, is rising. In particular, according to Hemelaar et al. (2011), from 2001 to 2007 the prevalence of the recombinant form CRF02_AG increased from 5.4 to 7.7% globally, with a major growth in African countries. However, a major increase was also observed in Western and Central Europe, where CRF02_AG accounted for 2.9% of HIV-1 infections at the beginning of the study period and for 4.5% at the end of 2007 (Hemelaar et al., 2011). In Italy, the prevalence of non-B strains increased from 2.6% in 1980-1992 to 18.9% in 1993-2008 (Lai et al., 2010), and the most prevalent non-B subtype are currently C, F and CRF02_AG (Santoro et al., 2012). This phenomenon is most likely due to the increasing number of migrants and travellers from areas of high HIV-1 prevalence where non-B subtypes are the predominant variant. Knowing and investigating the spread of non-B strains is not only essential for epidemiological and clinical reasons but also for laboratory implications. Indeed, the wide genetic variability of HIV-1 subtypes may affect the capability of the commonly used assays to de-

Table 1 - Patient’s HIV-1 genotypic resistance test.

<table>
<thead>
<tr>
<th>Protease gene</th>
<th>Resistance mutations</th>
<th>Other mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10I 13V 20I 36I 46I</td>
<td>14R 15V 16E 39S 41K 43R 63Q 64L 69K 70R 89M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymerase gene</th>
<th>Resistance mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrase gene</th>
<th>Resistance mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

| Other mutations | 10I 11I 1Q 112V 124A 125A 133T 134N 135V 136T |

Table 2 - HIV-1 RNA (copies/ml) using different assays at baseline evaluation and after 2 and 18 weeks of combined antiretroviral therapy (cART).

<table>
<thead>
<tr>
<th>Nuclisens EasyQ® HIV-1 2.0</th>
<th>Versant® HIV-1 RNA 1.0 Assay (kPCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 6,700</td>
<td>230,000</td>
</tr>
<tr>
<td>Week 2 40</td>
<td>104</td>
</tr>
<tr>
<td>Week 18 <3</td>
<td>38</td>
</tr>
</tbody>
</table>
tect and accurately quantify HIV-1 RNA in non-B subtypes and CRFs, as previously reported in African experi-
cences (Peeters et al., 2010; Luft et al., 2011; Bruzzone et al., 2014), as well as in European series (Holguin et al., 2008). Despite primers and probes used in the commercial HIV-1 RNA test are designed to annealing the most conserved region of HIV-1 virus, it is impossible for them to recognize all HIV-1 strains with the same efficiency. To investigate the concordance among the newly and commonly used assays [EQ, Abbott RealTime HIV-1 (m2000sp/rt), CO-
BAS AmpliPrep/COBAS Tagman® HIV-1 test v2.0 (CTM) and kPCR] several studies were carried out. On the whole, all assays show a good correlation and concordance with each other:

Only small differences were observed. Briefly, EQ assay in comparison with the others shows an under-quantification of HIV-1 RNA, mainly for G subtypes and CRF02_AG (Gomes et al., 2013; Ndaije et al., 2015); the quantitative validation of suitable kPCR assay was usually lower than those obtained by CTM assay (Troppan et al., 2009) and the quantitative values obtained using CTM, mainly for B subtypes, (Bourlet et al., 2011) were usually higher than those obtained by EQ and m2000sp/rt assays (Ndaije et al., 2015).

The discrepancy in the detection and/or quantification of some subtypes and CRFs between the used tests may be due to differences in technology platforms but, above all, to the target region of viral genome that each assay uses. The gag gene targeted by the EQ assay is less conserved than other such as the pol-int gene (m2000sp/rt, CTM and kPCR) and LTR region (CTM). The under-quantifi-
cation by EQ may be related to primer and probe mismatch-
mares in the target region whilst the over-quantification by CTM may be due to the amplification of double target: gag and LTR (Ndaije et al., 2015).

In such scenario, the method that measures the highest degree of viremia in the same sample should be considered the most reliable. A non-B subtypes or CRF HIV-1 strain infection should be suspected when lower than expected viral load values are found. In the above-described case, several factors were in accordance with a diagnosis of HIV-1 acute infection (a history of recent unprotected sexual intercourse, the mononucleosis-like syndrome and other typical indeterminate Western Blot test report): therefore, high levels of HIV-1 RNA were expected. Surprising-
ly, the HIV-1 RNA resulted 6,700 copies/ml. Nevertheless, when the genotypic resistance test revealed a CRF02_AG strain, the need of a second, different HIV-1 RNA test on the same samples was clear. The second result (230,000 copies/ml), two logarithms higher than the first one, was certainly more consistent with the clinical picture, and led to the choice of potentiating the ongoing cART with the addition of an appropriate drug against >100,000 copies/ml viral loads. The subsequent HIV-1 RNA controls, performed with both the virological assays, confirmed the discrepancy between the two tests. Finally, as previously reported, in the protease gene the following amino acids substitutions were detected: L101I, K20I, M36I, and M46I. In subtype B, the 101I, 201I and 361I mutations contribute to secondary resistance to protease inhibitors (PIs) whereas the 461I mutation reduces susceptibility to atazanavir, fosampren-
avir, indinavir, lopinavir and nelfinavir (Rhee et al., 2010) and increases the PIs catalytic efficiency (Henderson et al., 2012). However, in CRF02_AG the 201I is wild type, the 361I is detected in 99% of CRF02_AG (Taylor et al., 2008) and the real meaning of the 461I is unknown, although caution in PIs use is advisable.

In conclusion, physicians should be aware of the critical issues they might find when interpreting laboratory results of non-B HIV-1 infection, also because of possible implications in the therapeutic choices. Dialogue with virologists should be sought and can prove crucial whenever clinical and laboratory data seem not to match properly.

References

Bourlet T, Signorri-Smurch A, Roche L, Icard V, Saudain H, Trabaud M, et al. (2011). HIV-1 load comparison using four commercial re-

Department of Health and Human Services (DHHS). (2014). Guidelines for the use of antiretroviral agents in HIV-1-infected and adoles-

Gomes P, Carvalho AP, Diogo I, Gonçalves F, Costa I, Cabanas J, Camacho R.J. (2013). Comparison of the NucliSens EasyQ HIV-1 v2.0 with Abbott m2000rt Real Time HIV-1 assay for plasma RNA quantita-

work for HIV Isolation and Characterisation. Global trends in molecu-

sity in Italy over three decades. HIV Med. 11, 593-602.

Luft L.M., Gill M.J., Church D.L. (2011). HIV-1 viral diversity and its impli-

Troppan KT, Stekel E., Vielvan D., Kessel H.H. (2009). Evalu-
ation of the new VERSANT HIV-1 RNA 1.0 Assay (kPCR) for quanti-