Identification of Inquilinus limosus in Cystic Fibrosis: a first report in Italy

Annunziata Gaetana Cicatiello1*, Dora Vita Iula1*, Chiara Pagliuca1, Gabiria Pastore2, Caterina Pagliarulo2, Maria Rosaria Catania1, Roberta Colicchio1,3, Marco Picardi4, Valeria Raia5, Paola Salvatore1,6

1Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; 2Department of Sciences and Technologies, University of Sannio, Benevento, Italy; 3SDN-Foundation IRCCS, Naples, Italy; 4Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy; 5Cystic Fibrosis Center Translational Medical Sciences, Federico II University, Naples, Italy; 6CEINGE-Advanced Biotechnologies, Naples, Italy

*These authors contributed equally to this work

INTRODUCTION

Cystic fibrosis (CF) lung infection is characterized by chronic infections caused by a variety of microorganisms. Over the past 20 years, the epidemiology of bacteria involved in acute infections in CF has become increasingly complex. Although Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae and Burkholderia cepacia complex, have been the most common pathogens in the lower airways of CF patients with improved survival, new pathogens, such as Achromobacter xylosidans, Ralstonia pickettii, and Stenotrophomonas maltophilia and other unusual bacteria such as Acinetobacter spp., Bordetella spp., Moraxella spp., Comamonas spp., Rhizobium spp., Herbaspirillum spp., and Inquilinus limosus have been detected in the last two decades (Bosch et al., 2008; Coenye et al., 2002; Fernández-Olmos et al., 2012; Lopes et al., 2012; Miller et al., 2003; Raso et al., 2008; Spilker et al., 2008).

The standard laboratory methods available for isolation of bacteria from respiratory samples usually consist of selective media adapt-
ed to the culture analysis of pathogens most frequently associated with CF (Rogers et al., 2003). Correct identification of these pathogens is important as it underlies effective infection control measures and therapeutic intervention (Shreve et al., 1999). However, several studies have shown that the identification of pathogens closely related to CF is far from straightforward (McMenamin et al., 2000). Since conventional methods are not able to detect emerging species as potentially important pathogens in CF pulmonary infection only molecular biology techniques could categorise these isolates (Bittar et al., 2008a). Recently, Inquilinus limosus has been increasingly found in CF specimens by molecular approaches as a novel microorganism (Bittar et al., 2008a). This is a new multidrug-resistant species, belonging to the α proteobacteria; the genus Azospirillum is the most closely related bacteria (Coenye et al., 2002).

To date, 8 clinical cases have been described in Germany (Schmoldt et al., 2006; Wellinghamhausen et al., 2005), one case in the United States (Pitulle et al., 1999), 5 cases in France (Chiron et al., 2005), one case in the United Kingdom (Cooke et al., 2007) and in Spain (Salvador-García et al., 2013). Only one isolate of Inquilinus sp. has been recovered from blood samples of a patient without CF who had prosthetic valve endocarditis (Kiratsin et al., 2006).

Literature data indicate that some CF patients showed clinical signs of acute respiratory exacerbation and spirometric deterioration (Chiron et al., 2005; Wellinghamhausen et al., 2005, Hayes et al., 2009). In addition a serological response with the detection of IgG antibodies against various I. limosus antigens (Schmoldt et al., 2006) was reported, reflecting the pathogenic potential of this microorganism. Moreover, the multiresistant profile to antimicrobial agents, combined with its mucoid phenotype, may explain the ability of I. limosus to persist in the airways of CF patients.

In order to detect microbes in respiratory samples, including unusual non-fermenting Gram negative bacteria, all specimens were collected from patients regularly attending the Regional CF Care Center at the Federico II University Hospital of Naples from 2010 to 2013 and were processed according to standardized national guidelines (SIFC, http://www.sifc.it/).

A semiquantitative technique of the bacterial load, developed by Prof. N. Høiby (Koch et al., 2000) was applied. All sputum samples were diluted with dithiothreitol (v/v) for 30 min at 37°C. For effective isolation of all potential pathogens 20 µl of sample were plated on different selective media: BD Sabouraud agar, with gentamicin and chloramphenicol, MacConkey agar (Simad), Burkholderia cepacia Selective agar (BCSA; Biomerieux), BD Trypticase Soy Agar with 5% Sheep Blood (TSA) and BD Chocolate Agar: All plates were incubated for 48 h at 37°C, and the BCSA agar was incubated for further 15 days at room temperature for the detection of unusual bacteria and Mycobacterium abscessus. I. limosus was recovered, for the first time in Italy, from the sputum sample of one patient on BCSA agar containing gentamicin [0.01 g/l], vancomycin [0.0025 g/l] and polymyxin [600,000 U/l] after 5 days of incubation.

CASE REPORT

The mucoid strain of I. limosus was isolated from the sputum sample of a 20-year-old male patient with CF. At 8 months the patient received a diagnosis of CF for gastrointestinal symptoms and upper airway infections, based on sweat chloride test over 60 mmol/liter and confirmed by genetic analysis. At isolation of I. limosus the patient did not show any biochemical alteration of blood samples, as well as lung function tests were within the normal range for age and gender. Less than one acute pulmonary exacerbation/year had been recorded in the last five years. Two episodes of acute pancreatitis were previously reported.

In the initial sputum sample, apart from $\sim 10^6$ CFU/ml of H. influenzae, 10^3 CFU/ml of a mucoid Gram-negative bacillus was isolated from BCSA agar after 5 days of incubation. The isolate was positive to oxidase and catalase reaction, grew well on BCSA Selective agar and TSA, but failed to grow on MacConkey agar. Subsequently the profile of antibiotic resistance was evaluated by Kirby-Bauer test and E-Test (Table 1), on Mueller-Hinton agar, incubated at 37°C for 48 h; the interpretation of results is based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST).
The isolate showed a 99.9% sequence homology to the 16S rDNA sequence of the *I. limosus* type strain AU1979 by using the BLAST algorithm (Coenye et al., 2002). The region of the 16S rDNA analyzed is highly specific for *I. limosus*, while it is not conserved in other Gram negative species, such as *E. coli* and *P. aeruginosa*.

A sputum sample collected three months later from the same patient confirmed isolation of *I. limosus*, which was identified in same way as the initial isolate.

The only difference was the bacterial load equal to 10^4 CFU/ml of *I. limosus* and 10^4 CFU/ml of *H. influenzae*. The patient was still in very good clinical conditions as indicated by lung function test (FEV1% predicted: 81) and no antibiotics therapeutic regimen was performed during this observation.

CONCLUSIONS

There is growing evidence in the literature that *I. limosus* can colonize the airways of CF patients, but its pathogenic potential and natural reservoir is still unclear. While its correlation with other non-fermentative rods suggests environmental sources, given its multiresistance to several antimicrobial drugs, this bacterium could be selected during the evolution of the disease. To our knowledge, isolation of *I. limosus* has not been described in Italy from clinical samples.

The identification of *I. limosus* is difficult due to its rather slow growth and inability to grow on MacConkey agar. Recovery of *I. limosus* can be improved by using selective media containing polymyxin B or colistin and ticarcillin, such as BCSA agar, and prolonged incubation at room temperature. This failure to grow on MacConkey agar, positive oxidase reaction, and typical antimicrobial susceptibility profile (Table 1) should raise suspicion.

I. limosus shows a distinct antimicrobial susceptibility profile with high MICs for cefepime, ceftazidime, piperacillin/tazobactam, amikacin, trimethoprim/sulfamethoxazole and colistin. *I. limosus* may be effectively protected from the action of antimicrobial agents by high mucus production. In our report the conclusive identification of *I. limosus* was achieved using

Table 1 - Antimicrobial susceptibility of Inquilinus limosus isolates.

<table>
<thead>
<tr>
<th>Antimicrobial agent / Isolate</th>
<th>Kirby-Bauer (MIC µg/ml)</th>
<th>E-Test (MIC µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin/clavulanate</td>
<td>R</td>
<td>NS</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>R</td>
<td>NS</td>
</tr>
<tr>
<td>Cefepime</td>
<td>R</td>
<td>R >256</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>R</td>
<td>NS</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>R</td>
<td>R >256</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>R</td>
<td>NS</td>
</tr>
<tr>
<td>Piperacillin/tazobactam</td>
<td>R</td>
<td>R>256</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>S</td>
<td>S = 0.064</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>R</td>
<td>NS</td>
</tr>
<tr>
<td>Amikacin</td>
<td>R</td>
<td>R>256</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>R</td>
<td>NS</td>
</tr>
<tr>
<td>Imipenem</td>
<td>NS</td>
<td>S = 0.094</td>
</tr>
<tr>
<td>Meropenem</td>
<td>S</td>
<td>S = 0.094</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>R</td>
<td>R >32</td>
</tr>
<tr>
<td>Colistin*</td>
<td>R</td>
<td>R >256</td>
</tr>
</tbody>
</table>

The sensitivity tests done with disk showed no zone of inhibition. R, resistant; S, sensitive; NS, not screened.
MALDI-TOF mass spectrometry and confirmed by 16S rRNA gene sequencing. The described clinical case does not seem to support the pathogenic role of this microorganism as the patient showed a good lung function and clinical stability during the observation period. Therefore further studies are needed to evaluate the epidemiology and clinical implications of *Inquilinus limosus*. Although the role of this bacterium in the pathophysiology of the pulmonary infections is not known, the description of new bacterial species represents the first step to understand their involvement in the pathophysiology of CF lung infection.

ACKNOWLEDGMENTS

This research was funded in part by PRIN 2012 [grant number 2012WJSX8K]: “Host-microbe interaction models in mucosal infections: development of novel therapeutic strategies”; Project CCM 2011: “Prevenzione Universale. Malattie Infettive. Analisi di malattie emergenti e riemerse”.

REFERENCES

