For timing of HAART is less more? CD4+/CD8+ ratio and CD4+ percentage as surrogate markers for more complex immunological features

Manuela Fogli1, Marialuisa Iaria1, Emanuele Focà2, Cinzia Giagulli1, Francesca Caccuri1, Fabrizio Maggi3, Carlo Torti4, Arnaldo Caruso1, Simona Fiorentini1

1Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili, Brescia, Italy;
2Section of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia, Piazzale Spedali Civili, Brescia, Italy;
3Virology Section and Retrovirus Centre, Department of Experimental Pathology, University of Pisa, Italy;
4Department of Medical and Surgical Sciences, Unit of Infectious Diseases, University ‘Magna Graecia’, Catanzaro, Italy

SUMMARY

There is disagreement on the optimal timing of HAART initiation based on absolute CD4+ T-cell count (CD4+ count). We investigated if naïve patients with CD4+ T-cell percentage (%CD4+) <29% or CD4+/CD8+ ratio <1 display signs of immune deterioration notwithstanding CD4+ count ≥500 cells/µl. We found that these patients show B-cell aberrations and an impaired control of Torque Teno Virus replication. By contrast, patients with CD4+≥500/µl, %CD4≥29% and CD4+/CD8+≥1 displayed features of healthy subjects. Results obtained suggest that a combination of these parameters could be an adequate surrogate marker of immunological competence. This will be helpful in deciding when to start HAART.

KEY WORDS: Asymptomatic HIV-infected patients, CD4+ count, CD4+ percentage, CD4+/CD8+ ratio, HAART initiation.

The optimal timing of highly active antiretroviral therapy (HAART) initiation in HIV-infected persons is still unclear. The latest guidelines recommend making a decision for the use of HAART on the basis of CD4+ absolute T-cell count (CD4+ count) taking into account the asymptomatic or symptomatic status of the patients. For asymptomatic individuals therapy initiation is suggested when CD4+ count is lower than 500/µl whereas in the symptomatic it is recommended even at higher CD4+ counts (Antinori et al., 2012). Moreover, a moderate recommendation by experts in the field suggests initiating therapy when CD4+ counts >500/µl, independently of the presence of symptoms (Working Group of the Office of AIDS Research Advisory Council 2012; European AIDS Clinical Society, 2012). This suggestion is strengthened by recent studies showing that if CD4+ count is maintained equal to or greater than 500-750 cells/µl, an event that usually occurs if patients start HAART early, the expected disease-free survival is comparable in HIV-positive patients and in the general population (Lewden et al., 2012; Mocroft et al., 2013). Moreover, some evidence suggests that early HAART helps to preserve immune functions, for instance the longevity of B cell responses in vaccinated HIV-1-infected children (Pensieroso et al., 2009). Therefore, to better estimate the “immunological threshold” for HAART initiation, other parameters have to be taken into account. In par-
ticular, in clinical practice, there is increasing evaluation of CD4+ T cell percentage (%CD4+) as an additional parameter to help decide whether to initiate therapy. From 1993, the HIV classification system has allowed for the use of the %CD4+ in alternative to CD4+ count. Threshold value of %CD4+ calculated to obtain optimal concordance with CD4+ count ≥500/µl was of 29% (MMWR Recommendation Report, 1992). %CD4+>29% may therefore reinforce the indication to delay HAART initiation in asymptomatic patients when CD4+ count ≥500/µl. Several studies have shown that, besides CD4+ count, %CD4+ and CD4+/CD8+ T-cell ratio (CD4+/CD8+) predict the risk of both AIDS and non-AIDS-related morbidities (Guiguet et al., 2009; Clifford et al., 2009; Syrjälä et al., 1991; DAD Study Group et al., 2007). Moreover, Torti et al. (2012) showed that in HAART-treated HIV-infected persons experiencing a prolonged period of virus suppression, CD4+ count, %CD4+ and CD4+/CD8+ at baseline are all independent predictors of immune recovery.

Phenotypic and functional markers help to form a picture of patient immune status. In particular, we recently demonstrated (Fogli et al., 2012) that exhausted memory B cells, characterizing the late stages of HIV infection (Moir et al., 2008), emerge early during the disease being already present in asymptomatic HIV-infected patients naïve for HAART with CD4+ count ≥350/µl. B cell phenotypic aberrations were associated with a high load of a harmless virus endemic in the healthy population, the Torque Teno Virus (TTV) (Bendinelli et al., 2001), whose control of replication has been considered a surrogate marker of immune competence (Focosi et al., 2010).

We therefore sought to investigate if HAART-naïve patients with %CD4+ <29% and CD4-/CD8- display signs of immune deterioration (either as immune-phenotype patterns and lack of control of TTV replication) despite having an absolute CD4+ count ≥500/µl and, vice versa, if preservation of these parameters may be considered a surrogate of immune competence. To this purpose, surface phenotypic analysis of peripheral blood B lymphocytes was performed by 4-color flow cytometry on whole blood samples depleted of erythrocytes by lysis (FACS Lysing Solution, BD Biosciences). Directly fluorochrome-conjugated monoclonal antibodies specific to CD19, CD21, CD27 and CD10 (BD Pharmingen) were then used to evaluate the percentage of circulating exhausted tissue-like memory B cells (CD21lowCD27+ cells, gated on CD19+CD10-lymphocytes), and mature activated B cells or plasma blasts (CD21lowCD27- cells, gated on CD19+ CD10- lymphocytes). To determine TTV load, viral DNA was extracted from 200 µl of plasma samples and amplified using a single step universal TaqMan real-time PCR assay that targets a highly conserved UTR region of the viral genome. Amplification of this genome fragment enables to detect all the known TTV genotypes. The lower limit of sensitivity was 10^3 TTV DNA copies/ml of plasma (Maggi et al., 2003). All samples evaluated in this study were assayed simultaneously in triplicate. Statistical analysis was performed using Mann-Whitney U-test. P≤0.05 was used as conventional level of significance.

Forty-two HIV-infected patients naïve to antiretroviral drugs, asymptomatic and without any history of opportunistic infections or malignancies were enrolled at the Section of Infectious and Tropical Diseases of the University of Brescia, where a written informed consent was obtained. The study was approved by the Ethical Committee of the University Hospital of Brescia according to the declaration of Helsinki. Thirty-four healthy controls (HC) were selected among the laboratory workers. Patient characteristics are described in Table 1. In all the subjects enrolled CD4+ count never dropped below 350/µl. Within the HIV-infected patient cohort, 21 patients had CD4+ count <500/µl (median: 469, range: 353-496) and 21 patients had CD4+ count ≥500/µl (median: 621, range: 500-2049). Among the CD4+ count ≥500/µl patients 9 were characterized by %CD4+ ≥29% and CD4+/CD8+ ≥1, 9 had %CD4+ <29% and CD4+/CD8+ <1, and 3 had just one of the 2 parameters over the threshold.

We first investigated if signs of B cell exhaustion were present in asymptomatic HAART-naïve HIV-infected patients with preserved CD4+ count (≥500/µl). As expected, when patients with CD4+ count <500/µl were compared to the HC cohort, we observed a significantly higher percentage of CD21low B cells, either exhausted tissue-like memory B cells (CD10-
CD21low B cell subsets (CD10 CD21lowCD27 and CD21lowCD27+ B cells) were significantly higher in group A than in group B (median: 7.9 vs. 2.1, p≤0.001, and median: 8.1 vs. 2.4, p≤0.001, respectively), whereas the percentages of both CD21low B cell subsets in group A were significantly higher than HC (median: 7.9 vs. 2.1, p≤0.001, and median: 8.1 vs. 2.4, p≤0.001, respectively) (Figure 1A). In line with a more preserved immune cell status, in patients belonging to group B TTV load did not significantly differ from that detected in HC (median: 7.9 vs. 4.1, NS) whereas TTV plasma viremia was observed to be higher in group A compared to HC (median: 5.8 vs. 4.1, p≤0.005) (Figure 1D). HIV median viremia, as well as the number of patients showing a low-level viremia (<1000 HIV-RNA copies/ml) did not significantly differ between group A and group B (median viremia: 6390 copies/ml in group A (p≤0.001 and median: 8.1 vs. 10%, NS) (Figure 1A).
362/p75: 32750), NS; 3 patients in group A vs 5 patients in group B, NS] (Table 1).

It could be speculated that since it is yet uncertain whether antiretroviral therapy should be started at CD4+ count ≥500/µl, the consideration of additional parameters like %CD4+ and CD4+/CD8+, that are readily available in clinical practice, may help to pinpoint the timing of therapy initiation by selecting patients whose immune status may be more compromised. The present results appear to reinforce previous clinical findings showing that patients with higher %CD4+ and CD4+/CD8+ may have a better prognosis independently from the absolute CD4+ count (Burcham et al., 1991; Gebo et al., 2004; Taylor et al., 1989). However, we are aware that since an estimated date of HIV infection for the patient cohorts analyzed in this study was not available, differences observed might be also influenced by a different duration of untreated HIV infection.

Albeit most studies focused on CD4+ count increase as the main prognostic sign of immunological recovery after initiation of antiretroviral

FIGURE 1 - (A) HAART-naïve HIV-infected patients with either CD4+ count <500/µl and CD4+ count ≥500/µl show increased percentage of CD21lowCD27- (left panel) and CD21lowCD27+ (right panel) B cell subsets compared to healthy controls (HC). (B) HAART-naïve HIV-infected patients with either CD4+ count <500/µl and CD4+ count ≥500/µl show higher TTV levels compared to HC. (C) HAART-naïve HIV-infected patients with CD4+ count ≥500/µl, %CD4+ <29% and CD4+/CD8+ <1 (group A) show a higher percentage of CD21lowCD27- (left panel) and CD21lowCD27+ (right panel) B cell subsets compared to HC whereas patients with CD4+ count ≥500/µl, %CD4+ ≥29% and CD4+/CD8+ ≥1 (group B) have B cell subsets superimposable to HC. (D) Patients belonging to group A show higher TTV levels compared to HC whereas TTV viremia did not show significant differences between patients belonging to group B and HC. Graphs represent box-plot analysis with indication of median, 25th-75th and 10th-90th percentiles, and p value (****: p≤0.0001; ***: p≤0.001; *: p≤0.05; NS: Not Significant).
therapy, some studies have described the potential usefulness of %CD4 and CD4+/CD8+ in estimating immune recovery. Hulgan et al. (2005), showed, for instance, that %CD4% ≥17% before initiation of the first HAART regimen was associated with subsequent clinical disease progression even in persons with absolute CD4+ count ≥350/µl at baseline (Burcham et al., 1991).

Moreover, Castagna et al. (2010), in a retrospective observational study performed on 24 week-antiretroviral-treated patients, observed that patients who started therapy with a higher %CD4+ had a greater CD4+ count recovery than other patient cohorts.

Lastly, Torti et al. (2012) observed that lack of increase in any of the immune indicators %CD4+ and CD4+/CD8+ or CD4+ count appear to be deleterious for the achievement of excellent immune recovery in long-term HAART-treated patients.

Overall, the present study, limited in size and observational in design, appears to reinforce the hypothesis that patients who have CD4% ≥500/µl, % CD4% ≥29% and CD4%/CD8+ ≥1 do not suffer from HIV-related immune deterioration. Albeit clinical recommendations of HAART initiation should be based on differences in clinical outcomes, our results suggest that evaluation of CD4+ T cell number combined with % CD4+ and CD4+/CD8+ may contribute to a better definition of HAART initiation timing.

Our data are in line with recent findings (Serrano-Villar et al., 2013a; Serrano-Villar et al., 2013b) regarding the impact of CD4/CD8 T cell ratio on immune activation and aging. However, to confirm these conclusions larger studies including clinical end-points are still needed. Finally, results obtained in this study suggest that restoration of not only CD4+ count, but also of %CD4+ and the CD4+/CD8+ ratio should be considered in evaluating the immune-reconstitution effects of HAART.

ACKNOWLEDGEMENTS
The Authors wish to thank the patients who participated in this study and the medical team which enrolled them. We also acknowledge the skillful technical assistance of Chiara Mininti. This research was supported by Italian Ministry of Health, Istituto Superiore di Sanità (National Program AIDS Research, Grants: 45G.5 and 40G.16).

REFERENCES

