Bacterial vaginosis (BV) is the most common vaginal syndrome afflicting fertile, premenopausal and pregnant women. BV is associated with important adverse health conditions and infectious complications. Therapy with oral or local recommended antibiotics is often associated with failure and high rates of recurrences. The dominance of lactobacilli in healthy vaginal microbiota and its depletion in BV has given rise to the concept of oral or vaginal use of probiotic Lactobacillus strains for treatment and prevention of BV. This review investigated the evidence for the use of a single strain or cocktail of probiotics, administered orally or intravaginally, either alone or in conjunction with antibiotics for the treatment of BV. Lactobacilli use in BV is supported by positive results obtained in some clinical trials. The majority of clinical trials yielding positive results have been performed using probiotic preparations containing high doses of lactobacilli suggesting that, beside strain characteristics, the amount of exogenously applied lactobacilli could have a role in the effectiveness of the product. However, substantial heterogeneity in products, trial methodologies and outcome measures do not provide sufficient evidence for or against recommending probiotics for the treatment of BV.

KEY WORDS: Bacterial vaginosis, Probiotics, Lactobacilli, Controlled clinical trials.
1. stimulation of the immune system;
2. competition with other microorganisms for nutrients and for adherence to the vaginal epithelium;
3. reduction of the vaginal pH by the production of organic acids, especially lactic acid;
4. production of antimicrobial substances, such as bacteriocins, and hydrogen peroxide (Aroutcheva et al., 2001).

The hydrogen peroxide microbial metabolite represents one of the most effective protective agents against pathogens. It has been observed that 70% to 95% of lactobacilli present in the vaginal flora of healthy women produce hydrogen peroxide. This percentage drops to 5% in women affected by vaginal infections (Eschenbach et al., 1989).

BACTERIAL VAGINOSIS

Bacterial vaginosis (BV) represents the most common vaginal syndrome afflicting fertile, premenopausal and pregnant women, with an incidence rate ranging from 5% to 50% (Sobel, 1997). BV is a complex, polymicrobial disorder characterized by an overgrowth of strict or facultative anaerobic bacteria (Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., Mobiluncus spp., Mycoplasma hominis) and a reduction of lactobacilli particularly those producing hydrogen peroxide (Fredricks et al., 2005; Lamont et al., 2011). Women with BV typically complain of vaginal discomfort and homogeneous malodorous vaginal discharge, which is more noticeable after unprotected intercourse, although a substantial fraction of women are asymptomatic (Klebanoff et al., 2004). The overgrowth of vaginal anaerobes determines an increased production of amines (putrescine, cadaverine and trimethylamine) that become volatile at alkaline pH, i.e. after sexual intercourse and during the menstrual cycle, and contribute to the typical malodor of the vaginal discharge (Chen et al., 1979). BV is frequently disregarded since the symptoms are often insignificant, however the clinical consequences could be important. In fact, the alterations in the vaginal microbiota have been associated with ascending infections and obstetric complications (Koumans et al., 2002), as well as with urinary tract infections (Harmanli et al., 2000). In women undergoing in vitro fertilization, BV may result in lower implantation rates and increased rates of early pregnancy loss (Eckert et al., 2003; Verstraeten et al., 2005). Increasing data also indicate that BV facilitates the acquisition of sexually transmitted diseases such as Neisseria gonorrhoeae, Chlamydia trachomatis, HIV and Herpes simplex virus type-2 infection (HSV-2) (Martin et al., 1999; Cherpes et al., 2003; Wiesenfeld et al., 2003; Sessa et al., 2013). Moreover, genital tract shedding of HSV-2 (Cherpes et al., 2005) and cytomegalovirus (Ross et al., 2005) is significantly higher in women with BV than in BV-free women and female genital tract HIV load correlates inversely with Lactobacillus count (Sha et al., 2005). Therefore, vaginal lactobacilli in vivo exert an important role in sexually transmitted infections both in relation to the protection of female health or by reducing the risk of virus transmission from an infected woman to a healthy man.

Two methods are used for BV diagnosis: the first was described by Amsel (Amsel et al., 1983) and implies the presence of at least three of the following criteria:
1. thin, homogeneous vaginal discharge;
2. vaginal pH higher than 4.5;
3. ‘fishy’ odour of vaginal fluid after addition of 10% KOH (whiff test);
4. presence of clue cells on microscopic evaluation of saline wet preparations.

The second method, the Gram stain score of vaginal smears according to Nugent (Nugent et al., 1991), involves the microscopic quantitation of bacterial morphotypes yielding a score between 0 and 10. A Gram stain score ≥7 is considered indicative of BV.

In recent years, culture-independent techniques based on the analysis of rRNA gene sequences have been developed, providing powerful tools to reveal the phylogenetic diversity of the microorganisms found within the vaginal ecosystem and to understand community dynamics (Fredricks et al., 2005; Lamont et al., 2011). These molecular studies indicate that the vaginal bacterial communities differ dramatically between women with and without BV. BV is associated with increased taxonomic richness and diversity. The microbiota composition is highly variable among subjects at a fine taxonomic scale (species or genus level), but, at the phylum level, Actinobacteria and Bacteroidetes are strongly as-
associated with BV, while higher proportions of *Firmicutes* are found in healthy subjects. Several vaginal bacteria have been indicated as excellent markers of BV, either alone or in combination, including *Megasphaera*, three novel bacteria in the order *Clostridiales*, *Leptotrichia/Sneathia*, *Atopobium vaginae*, and an *Eggerthella*-like bacterium (Lamont et al., 2011).

Therapy of BV involves oral or local administration of metronidazole or intravaginal clindamycin, and varies in efficacy (48-85% for absence of infection 4 or more weeks after treatment) (Koumans et al., 2002). The long-term cure rate is low, BV recurs in up to 40% of women within 3 months after initiation of antibiotic therapy and in up to 50% of women after 6 months (Bradshaw et al., 2006). There are several unpleasant side-effects and disadvantages associated with these therapies, including superinfections by pathogenic microorganisms (Sobe et al., 2006) and susceptibility of lactobacilli to clindamycin (Bayer and McGroarty, 1996; Beigi et al., 2004). The high recurrence rates resulting in repeated exposure to antibiotics and the emergence of drug-resistant strains suggest a need for alternative therapeutic tools based both on new antibacterial agents (Cruciani et al., 2012) and probiotic products.

RATIONALE FOR USING PROBIOTICS IN GENITOURINARY INFECTIONS

Many studies provided evidence of the beneficial functions of the human microbiota, and prompted the selection of bacterial strains, recognized as probiotics, with health-promoting capacities for the treatment of conditions in which the microbiota, or its optimal functioning, is perturbed. Probiotics have been defined as “live microorganisms which when administered in adequate amounts confer a health benefit on the host” (Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, 2002). Clinical applications of probiotics include the prevention and treatment of gastrointestinal, urogenital and respiratory infections, inflammatory bowel diseases and allergic diseases and use as adjuvants in vaccination (Kligler et al., 2007; Nova et al., 2007; Goldin and Gorbach, 2008; Barrons and Tassone, 2008; Vouloumanou et al., 2009; Borchers et al., 2009). The clinical utility of probiotics may extend to fields such as stress-related disorders (anxiety and depression) (Bravo et al., 2001; Rao et al., 2009) and cancer (Geier et al., 2006; de Moreno de LeBlanc et al., 2007). Moreover, recent studies suggested that probiotics may represent a therapeutic strategy for metabolic and cardiovascular diseases through the modulation of host metabolism and inflammation (Lye et al., 2010; Wang et al., 2011; Lam et al., 2012). Indeed, atherosclerosis is associated with lipid accumulation and inflammation in the arterial wall, and bacteria have been suggested as the causative agents of this disease (Sessa et al., 2006; Sessa et al., 2007; Koren et al., 2011).

The rationale for the use of probiotics in women is based on the genitourinary regulatory role played by the vaginal healthy microbiota and the need for restoration of this microbial ecosystem after insult. Lactobacilli are the commonest organisms used as probiotics. The use of lactobacilli to re-establish a physiological microbial flora of the female urogenital tract dates back to the early 1900s (reviewed by Sieber and Dietz, 1998). Since the beginning of the nineties there has been a renewed interest in the use of probiotic products in the treatment and prevention of BV and vaginitis. Since antimicrobial treatment of urogenital infections is not always effective, and problems remain due to bacterial and yeast resistance, recurrent infections, and side-effects, it is not surprising that alternative remedies are of interest to patients and their caregivers. Indeed, lactobacilli probiotics can be used over a long time without adverse effects, making them an attractive alternative to antibiotics, particularly in addressing the problem of high recurrence rates.

CLINICAL TRIALS

Studies have been carried out to assess the efficacy of a single strain or cocktail of probiotics administered orally or intravaginally in the treatment of BV (Falagas et al., 2007). Two types of experimental approaches have been used in clinical trials using probiotics for treatment of BV. In the first, BV therapy was carried out using on-
Clinical trials on probiotics use for treatment of bacterial vaginosis

The major randomized controlled trials using the first type of approach on women affected by BV are reported in Table 1. Only two studies employing different species of lactobacilli have been performed using well-characterized and well-selected strains specific for treatment of genitourinary infections (Anukam et al., 2006b; Mastromarino et al., 2009). Both studies used a combination of different species of lactobacilli with different biological properties on fertile non-pregnant women. *L. rhamnosus* GR-1 and *L. fermentum* RC-14 were the strains used in the first study (Anukam et al., 2006b). *L. rhamnosus* GR-1 adheres strongly to uroepithelial cells and inhibits adhesion and growth of uropathogens (Reid et al., 1987). *L. fermentum* RC-14 produces biosurfactant compounds (Velraeds et al., 1998) and significant amounts of hydrogen peroxide, adheres to uroepithelial cells and inhibits pathogen binding (Reid and Bruce, 2001). These strains can be recovered from the vagina after oral administration (Reid et al., 2001). The second study used a product containing a combination of three strains of lactobacilli (*Lactobacillus brevis* CD2, *Lactobacillus salivarius* FV2 and *Lactobacillus plantarum* FV9) (Mastromarino et al., 2009). *L. salivarius* FV2 and *L. plantarum* FV9 produce anti-infective agents, including hydrogen peroxide, and are able to co-aggregate efficiently with vaginal pathogens (Mastromarino et al., 2002). *L. plantarum* and *L. brevis* strains are able to adhere at high levels to human epithelial cells, displacing vaginal pathogens (Maggi et al., 2000; Mastromarino et al., 2002). The strains were able to temporarily colonize the human vagina (Massi et al., 2004), reduce vaginal proinflammatory cytokines IL-1β and IL-6 (Hemalatha et al., 2012) and showed inhibitory activity towards HSV-2 replication in cell cultures (Conti et al., 2009; Mastromarino et al., 2011). A single-blind comparison of intravaginal probiotics (*L. rhamnosus* GR-1 and *L. fermentum* RC-14) and metronidazole gel for the treatment of BV was carried out on a group of Nigerian women (Anukam et al., 2006b). Cure of BV was based on a Nugent score ≤3 at 30 days. A BV cure rate of 65% was achieved after probiotic treatment compared to 33% of the metronidazole therapy (P=0.056). The double-blind, placebo-controlled trial (Mastromarino et al., 2009) used both the Amsel criteria and Nugent scores to assess BV cure as recommended by the FDA (US Dept of

<table>
<thead>
<tr>
<th>Authors</th>
<th>Size</th>
<th>Type of study/duration</th>
<th>Intervention</th>
<th>BV cure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anukam et al., 2006b</td>
<td>40</td>
<td>R, OB, AC 30 days</td>
<td>Daily vaginal capsule containing L. rhamnosus GR-1 (109 CFU) and L. reuteri RC-14 (109 CFU) or 0.75% metronidazole gel b.i.d. for 5 days</td>
<td>65% compared to 33% metronidazole (P = 0.056)</td>
</tr>
<tr>
<td>Mastromarino et al., 2009</td>
<td>34</td>
<td>R, DB, PC 3 week</td>
<td>Daily vaginal tablet containing ≥109 CFU of L. brevis CD2, L. salivarius FV2, and L. plantarum FV9 for 7 days</td>
<td>50% compared to 6% control (P = 0.017)</td>
</tr>
<tr>
<td>Parent et al., 1996</td>
<td>32</td>
<td>R, PC 4 week</td>
<td>1-2 daily vaginal tablet containing ≥107 CFU of L. acidophilus and 0.03 mg estril for 6 days</td>
<td>88% compared to 22% control (P <0.05)</td>
</tr>
<tr>
<td>Hallén et al., 1992</td>
<td>57</td>
<td>R, DB, PC 20-40 days</td>
<td>Vaginal suppository containing L. acidophilus 10⁸-⁹ CFU or placebo b.i.d. for 6 days</td>
<td>21% compared to 0% control (P = NS)</td>
</tr>
</tbody>
</table>

R = randomized; DB = double blind; PC = placebo controlled; OB = observer blind. AC = active controlled. CFU = colony forming units.
Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry: Bacterial vaginosis-developing antimicrobial drugs for treatment (1998). The intravaginal probiotic-treated group (L. brevis CD2, L. salivarius FV2 and L. plantarum FV9) obtained a BV cure rate of 50% compared to 6% in the placebo-treated group with the combined test methods, whereas a 67% vs 12% cure rate was obtained when considering only the Amsel criteria. The other clinical studies were performed using different strains of Lactobacillus acidophilus.

A high BV cure rate (88%) was observed in a placebo-controlled study using a pharmaceutical product (containing a H$_2$O$_2$-producing L. acidophilus strain plus estriol) that included both pregnant and non-pregnant women (Parent et al., 1996). However, the results reported in this trial may have been biased by the enrollment criteria in which only two of the four Amsel criteria were required for a positive definition of BV status. A product containing H$_2$O$_2$-producing L. acidophilus turned out to be ineffective for treatment of BV assessed according to Amsel criteria (Hallén et al., 1992). However it is difficult to evaluate the real efficacy of the product tested in this study since 50% of the patients in the active group and 86% of the placebo group did not complete the trial.

Clinical trials on probiotics use combined with antibiotic treatment for BV

Five randomized controlled trials used lactobacilli following conventional antibiotic treatment (Table 2) to evaluate the BV cure rate after one month (Anukam et al., 2006a; Petricevic and Witt, 2008) or BV recurrence after 2-6 months (Larsson et al., 2008; Eriksson et al., 2005; Bradshaw et al., 2012). A trial in Nigeria evaluated augmentation of antimicrobial metronidazole therapy for BV by a 30-day oral probiotic treatment (L. rhamnosus GR-1 and L. fermentum RC-14) compared to placebo-treated control (Anukam et al., 2006a). At the end of treatment a significantly greater number of women in the probiotic group com-

<table>
<thead>
<tr>
<th>Authors</th>
<th>Size</th>
<th>Type of study duration</th>
<th>Intervention</th>
<th>BV cure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anukam et al., 2006a</td>
<td>125</td>
<td>R, DB, PC</td>
<td>Oral metronidazole 500 mg b.i.d. for 7 days and oral capsules containing L. rhamnosus GR-1 (109 CFU) and L. reuteri RC-14 (109 CFU) or placebo b.i.d. for 30 days starting on day 1 of metronidazole treatment</td>
<td>88% compared to 40% control (P <0.001)</td>
</tr>
<tr>
<td>Petricevic and Witt, 2008</td>
<td>190</td>
<td>R, OB, PC</td>
<td>Oral clindamycin 300 mg b.i.d. for 7 days, then vaginal capsules containing 109 CFU of L. casei rhamnosus for 7 days</td>
<td>83% compared to 35% control (P <0.001)</td>
</tr>
<tr>
<td>Larsson et al., 2008</td>
<td>100</td>
<td>R, DB, PC</td>
<td>Vaginal 2% clindamycin cream directly followed by vaginal capsules containing L. gasseri Lba EB01-DSM 14869 (108-109 CFU) and L. rhamnosus Lbp PB01-DSM 14870 (108-109 CFU) for 10 days, probiotic treatment repeated for 10 days after each menstruation during 3 menstrual cycles</td>
<td>65% compared to 46% control (P = 0.042)</td>
</tr>
<tr>
<td>Eriksson et al., 2005</td>
<td>187</td>
<td>R, DB, PC</td>
<td>Vaginal 100 mg clindamycin ovules for 3 days, then tampons containing 108 CFU of L. gasseri, L. casei rhamnosus, L. fermentum or placebo tampons during the next menstrual period</td>
<td>56% compared to 62% control (P = NS)</td>
</tr>
<tr>
<td>Bradshaw et al., 2012</td>
<td>268</td>
<td>R, DB, PC</td>
<td>Oral metronidazole 400 mg b.i.d. for 7 days followed by vaginal pessary containing L. acidophilus KS400 ≥107 CFU and 0.03 mg estriol for 12 days</td>
<td>72% compared to 73% control (P = NS)</td>
</tr>
</tbody>
</table>

R = randomized; DB = double blind; PC = placebo controlled; OB = observer blind. CFU = colony forming units.
pared to the placebo group were BV-free (Nugent score ≤3). The study by Petricevic and Witt (2008) performed a 7-day Lactobacillus treatment after clindamycin therapy. Intravaginal Lactobacillus casei rhamnosus (Lcr35) was used in the intervention group, whereas women in the control group did not receive Lcr35 (Petricevic and Witt, 2008). The BV cure rate was evaluated by Nugent method four weeks after the last administration of medication in both groups. A significantly higher cure rate was obtained in the intervention group.

The efficacy of Lactobacillus supplementation after clindamycin or metronidazole treatment on the recurrence rate of BV was evaluated in three trials (Larsson et al., 2008; Eriksson et al., 2005; Bradshaw et al., 2012). A ten-day repeated treatment with L. gasseri Lba EB01-DSM 14869 and L.rhamnosus Lbp PB01-DSM 14870 during three menstrual cycles was compared with a placebo treatment on BV-affected women enrolled according to Amsel criteria (Larsson et al., 2008). The cure rate was evaluated by the Hay/Ison score (Ison and Hay, 2002). Probiotic use did not improve the efficacy of BV therapy after the first month of treatment, but it significantly reduced the recurrence rate of BV at six months from initiation of treatment.

Administration of tampons impregnated with L. gasseri, L. casei subsp. rhamnosus and L. fermentum or placebo tampons during the menstrual period following clindamycin treatment was exploited (Eriksson et al., 2005). Cure rates assessed by Amsel criteria after the second menstrual period did not show a significant difference between the two groups. Possible explanations for the lack of effects could be the low amount of lactobacilli in tampons at the end of the study (10^6 PFU) or the unfavourable period of administration i.e. during the menstrual flow. Pessaries containing L. acidophilus KS400 were used in a recent trial to evaluate the efficacy of probiotics on the recurrence rate of BV following oral metronidazole treatment (Bradshaw et al., 2012). A 12 day course of probiotic pessary did not achieve higher cure rates for BV compared with placebo pessary over six months of follow-up as assessed by Nugent score. A recent prospective, randomized, placebo-controlled, double-blinded study evaluated the efficacy of vaginal probiotic capsules for BV prophylaxis in healthy women with a history of recurrent BV (Ya et al., 2010). One hundred and twenty healthy Chinese women with a history of recurrent BV (≥2 BV episodes in the previous year) were assigned randomly to daily vaginal prophylaxis with 1 capsule that containing 8x10^9 CFU of L. rhamnosus (6.8x10^9 CFU), L. acidophilus (0.4x10^9 CFU) and Streptococcus thermophilus (0.4x10^9 CFU) or 1 placebo capsule for 7 days on, 7 days off, and 7 days on. Probiotic prophylaxis resulted in lower recurrence rates for BV (15.8% vs 45.0%; $P<0.001$) through 2 months as assessed according to Amsel criteria. Between the 2 and 11-month follow-up period, women who received probiotics reported a lower incidence of BV (10.6% vs 27.7%; $P=0.04$). However a limitation of this study was that 11-month outcomes were collected by telephone follow-up interview.

DISCUSSION

In recent years several clinical trials have been performed to investigate whether specific strains of lactobacilli, administered either orally or intra-vaginally, in combination with antibiotics or not, could be effective in the treatment or prevention of vaginal infections. The studies using lactobacilli to treat BV, albeit small in size, showed the potential of probiotics to cure BV. Although the species used in the various trials differed, three out of four studies reported a significant cure rate (Parent et al., 1996; Anukam et al., 2006b; Mastromarino et al., 2009). When probiotics were used following antibiotic treatment, the BV cure rate was increased and recurrence rates were reduced in three out of five studies (Anukam et al., 2006a; Petricevic and Witt, 2008; Larsson et al., 2008).

An important issue concerns the prevention of BV recurrence in healthy women with a history of recurrent BV. Despite the important adverse health conditions associated with abnormal vaginal flora, no preventive treatments are available. The positive results obtained in the only clinical trial using lactobacilli in healthy Chinese women (Ya et al., 2010) suggest the potential of probiotics for BV prophylaxis. It is noteworthy that, unlike antibiotics, lactobacilli probiotics can be
used over a long period without adverse effects. The majority of clinical trials reporting positive results were performed using probiotic preparations containing high doses of lactobacilli (around 10^9 CFU) suggesting that, beside strain characteristics, the amount of exogenously applied lactobacilli could have a role in the effectiveness of the product. Moreover, recent observational data using prolonged repetitive courses of Lactobacillus-containing probiotics appear to be more promising than short courses (Ya et al., 2010; Bradshaw et al., 2012).

The preferred route of delivery for probiotic lactobacilli is intravaginal. However, some authors delivered lactobacilli orally to repopulate the vagina, based on the observation that pathogens can pass from the gut into the urogenital system and that orally administered Lactobacillus strains have been recovered from the vagina (Strus et al., 2012). It is noteworthy that the capability of the lactobacilli to colonize the vagina after oral ingestion is strictly dependent on their viability and on their potential to survive gastric acid and bile salts. Furthermore, the fact that lactobacilli can reach the vagina is not to be taken for granted as the gut microbiota and the vaginal microbiota differ greatly, which excludes a direct passage of all the species and strains present in the gut. It should also be pointed out that since none of the trials on oral use of lactobacilli in BV evaluated vaginal colonization by the administered strains, it cannot be excluded that the bacteria may have exerted a systemic immunomodulating effect thus conferring an improvement of the clinical conditions. Obviously, the timing of vaginal colonization after oral administration is longer compared to direct vaginal administration. In addition, the load of lactobacilli that can be delivered orally to the vagina is clearly lower than direct vaginal administration.

In conclusion, lactobacilli use in bacterial vaginosis is supported by positive results obtained in some clinical trials. However, substantial heterogeneity in products, trial methodologies and outcome measures do not provide sufficient evidence for or against recommending probiotics for the treatment of BV. Indeed, the trials with probiotics on BV have been conducted using different bacterial species and strains, dosage regimen, route of administration, duration of treatment and population under study. All these differences could act as confounding factors hindering a real comparison among the trials and also may account for the different effectiveness of the treatments.

Larger, well-designed randomized controlled trials with standardized methodologies are needed to confirm the benefits of probiotics in the treatment of BV.

REFERENCES

SOBEL J.D., FERRIS D., SCHWEBKE J., NYIRJESY P.,

