Trichomonads in pleural effusion: case report, literature review and utility of PCR for species identification

Marion Leterrier1, Florent Morio2,3, Benoît Renard4, Anne-Sophie Poirier1, Michel Miegeville2,3, Guy Chambreuil1

1Laboratoire de Biologie médicale-Unité de Microbiologie, Centre Hospitalier Départemental La Roche-sur-Yon, Les Oudairies, La Roche-sur-Yon cedex 9, France; 2Laboratoire de Parasitologie-Mycologie, Centre Hospitalo-Universitaire de Nantes, Hôtel Dieu, 9 quai Moncousu, Nantes Cedex 1, France; 3Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155-HC3Med, Faculté de Pharmacie, Nantes Cedex, France; 4Service de Réanimation, Centre Hospitalier Départemental La Roche-sur-Yon, Les Oudairies, La Roche-sur-Yon cedex 9, France

INTRODUCTION

Trichomonas tenax is a flagellated protozoan commonly found in the human oral cavity, but of unusual occurrence in pulmonary infections. We describe a case of a 67-year-old patient with glioblastoma who presented with severe pleurisy in the post-operative period while she was receiving high-dose corticotherapy. Several motile flagellated protozoa were identified in the pleural fluid. Trichomonas tenax was identified by molecular methods. Pulmonary infections with Trichomonads might be underestimated because of diagnostic difficulties. The utility of molecular biology for species identification is underlined and the pathogenicity of Trichomonad parasites in human lungs is discussed in light of previously reported cases.

KEY WORDS: Trichomonads, Lungs, Molecular identification, Metronidazole, Pleurisy

SUMMARY

Trichomonas tenax is a flagellated protozoan commonly found in the human oral cavity but of unusual occurrence in pulmonary infections. We describe a case of a 67-year-old patient with glioblastoma who presented with severe pleurisy in the post-operative period while she was receiving high-dose corticotherapy. Several motile flagellated protozoa were identified in the pleural fluid. Trichomonas tenax was identified by molecular methods. Pulmonary infections with Trichomonads might be underestimated because of diagnostic difficulties. The utility of molecular biology for species identification is underlined and the pathogenicity of Trichomonad parasites in human lungs is discussed in light of previously reported cases.

KEY WORDS: Trichomonads, Lungs, Molecular identification, Metronidazole, Pleurisy

Received June 13, 2011
Accepted August 14, 2011

INTRODUCTION

Trichomonas tenax is a flagellated protozoan commonly found in the human oral cavity, especially in patients with poor oral hygiene. Although T. tenax is usually considered a commensal organism, pulmonary infections caused by this parasite, which account for most of cases of pulmonary trichomonosis, have been reported repeatedly in the last few years in patients with lung disease or with various degrees of immunosuppression (Miller et al., 1982; Hersh, 1985; Porcheret et al., 2002; Mallat et al., 2004; Wang et al., 2006; Bellanger et al., 2008). In most reports, identification has been made by microscopic examination that requires a high level of expertise and is often limited to the Trichomonas genus. Consequently, the diagnosis of pulmonary trichomonosis could clearly benefit from the use of molecular methods that allow rapid identification to the species level, as well as the discovery of new species (Mantini et al., 2009).

Together with the high prevalence of Trichomonads in patients with Pneumocystis pneumonia and acute respiratory-distress syndrome, the question of the pathogenic power of Trichomonas parasites in human lungs has also been raised (Duboucher et al., 2005; Duboucher et al., 2007b). Herein, we report a new case of pulmonary trichomonosis, formally due to T. tenax, that manifested as pleurisy in a patient treated with high-dose corticotherapy for glioblastoma.
CASE REPORT

A 67-year-old woman was admitted for left hemiparesia that had been developing for one month. Diagnosis of grade IV glioblastoma (WHO criteria) was made. Excision of a frontal lobe tumoural cyst was performed. Because of a persistent, predominantly brachio-facial, left hemiparesia in the post-operative period, high-dose corticotherapy with prednisone was started (160 mg per day, intravenously). This led to clinical improvement allowing us to plan adjuvant chemotherapy. However, on the 17th post-operative day, the patient suddenly presented with right basi-thoracic pain and acute respiratory failure that required her transfer to the intensive-care unit (ICU). She was apyretic, polypneic (up to 30/minute), and presented with severe hypoxemia (pO₂: 44 mmHg via an oxygen mask at high concentration). Antibiotherapy with amoxicillin-clavulanic acid and ofloxacin was started.

A computed chest tomography (CT) scan revealed an important right pleural effusion with pulmonary collapse (Figure 1). The pleural effusion was drained (800 mL) and was associated with respiratory improvement (decrease of oxygen dependency). The pleural fluid was sent for microbiological analysis. At macroscopic examination, the sample was of brownish appearance and purulent. Microscopic examination revealed a large number of motile and flagellated parasites, along with bacteria. Based on its microscopic characteristics, the protozoan was identified as a Trichomonas species (oval in shape, and ranging from 8 to 10 µm in length, with four anterior flagella and an undulating membrane). Bacterial cultures showed aero-anaerobic flora. Thus, metronidazole (1.5 g per day) was introduced and the antibiotherapy was switched to amoxicillin (6 g per day).

A sample of the pleural fluid was sent to the Laboratory of Parasitology and Mycology at Nantes University Hospital for species identification of the Trichomonads. Identification was confirmed by microscopic examination and molecular biology. Briefly, DNA was extracted from the pleural fluid using the Nucleospin Tissue kit (Macherey Nagel) according to the manufacturer’s instructions. Amplification and sequencing of the 5.8S rRNA gene and internal transcribed spacer regions were achieved using the previously described primers TRICHO-F (5’-CGGTAGGT-GAACCTGCAGTT-3’) and TRICHO-R (5’-TGCTCAGTTCACGGGTCT-3’) (Jongwutiwes et al., 2000). Comparisons of the nucleotide sequences of our isolate with the GenBank database (http://www.ncbi.nlm.nih.gov/genbank/) revealed a 100% homology (367 pb) with Trichomonas tenax ATCC 30207 (accession number U86615).

Despite the patient’s initial clinical improvement and transfer out of the ICU after 6 days, by one month later our patient had died of complications of glioblastoma relapse. The nucleotide sequence of the T. tenax isolate has been deposited in the GenBank database under accession number HM579936.

DISCUSSION

Pulmonary trichomonosis was initially thought to be a rare event, but studies published over the last few years indicate that its occurrence may be underestimated (Duboucher et al., 2007c). Indeed, Trichomonads can present under different aspects in clinical specimens: they can occur as the typical flagellate form that is easily recognized by microbiologists, but also as an amoeboid-like form resulting from cytoskeletal changes and flagellum loss following adhesion to host cells. The latter form is particularly difficult to recognize, but is frequently reported in patients with Pneumocystis pneumonia and those with respiratory failure (Duboucher et al., 2006).

Trichomonas tenax is often suspected to be re-
TABLE 1 - Clinical and microbiological characteristics of the 17 cases of Trichomonads associated pleural empyema published in the literature since 1966.

<table>
<thead>
<tr>
<th>Year</th>
<th>Age/sex</th>
<th>Underlying disease(s)</th>
<th>Immunosuppressive therapy</th>
<th>Microscopic examination</th>
<th>Molecular identification</th>
<th>Bacterial co-infection</th>
<th>Treatment</th>
<th>Outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>40/M</td>
<td>None</td>
<td>no</td>
<td>Trichomonas sp.</td>
<td>no</td>
<td>no</td>
<td>MTZ</td>
<td>Clinical improvement</td>
<td>Abed et al., 1966</td>
</tr>
<tr>
<td>1968</td>
<td>87/M</td>
<td>Chronic pulmonary disease</td>
<td>no</td>
<td>Trichomonas tenax</td>
<td>no</td>
<td>yes</td>
<td>MTZ, TET</td>
<td>Clinical improvement</td>
<td>Memik et al., 1968</td>
</tr>
<tr>
<td>1973</td>
<td>66/M</td>
<td>Stomach cancer</td>
<td>no</td>
<td>Trichomonas intestinalis (reclassified as Pentatrichomonas hominis)</td>
<td>no</td>
<td>yes</td>
<td>MTZ</td>
<td>Death</td>
<td>Houin et al., 1973</td>
</tr>
<tr>
<td>1978</td>
<td>35/M</td>
<td>Alcohol abuse</td>
<td>no</td>
<td>Trichomonas sp.</td>
<td>no</td>
<td>NA</td>
<td>MTZ</td>
<td>Clinical improvement</td>
<td>Walzer et al., 1978</td>
</tr>
<tr>
<td>1982</td>
<td>48/M</td>
<td>Gastric carcinoma</td>
<td>no</td>
<td>Trichomonas tenax</td>
<td>no</td>
<td>yes</td>
<td>MTZ, GEN and CLD</td>
<td>Clinical improvement</td>
<td>Miller et al., 1982</td>
</tr>
<tr>
<td>1984</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Trichomonas sp.</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Osborne et al., 1984</td>
</tr>
<tr>
<td>1985</td>
<td>70/M</td>
<td>Alcohol abuse</td>
<td>no</td>
<td>Trichomonas tenax</td>
<td>no</td>
<td>yes</td>
<td>MTZ, CEF</td>
<td>Clinical improvement</td>
<td>Ohkura et al., 1985</td>
</tr>
<tr>
<td>1994</td>
<td>42/M</td>
<td>Alcohol abuse</td>
<td>no</td>
<td>Trichomonas sp.</td>
<td>no</td>
<td>yes</td>
<td>MTZ</td>
<td>Clinical improvement</td>
<td>Radosavljevic et al., 1994</td>
</tr>
<tr>
<td>1998</td>
<td>53/M</td>
<td>Acromegaly, rectal adenocarcinoma</td>
<td>no</td>
<td>Trichomonas tenax</td>
<td>no</td>
<td>yes</td>
<td>MTZ</td>
<td>Clinical improvement</td>
<td>Shiota et al., 1998</td>
</tr>
<tr>
<td>2000</td>
<td>28/F</td>
<td>Lupus erythematosus, pancytopenia</td>
<td>no</td>
<td>Pentatrichomonas hominis</td>
<td>yes</td>
<td>no</td>
<td>MTZ, AMK and CFP</td>
<td>Death</td>
<td>Jongwutiwes et al., 2000</td>
</tr>
<tr>
<td>2002</td>
<td>59/M</td>
<td>Adenocarcinoma</td>
<td>Corticotherapy</td>
<td>Trichomonas tenax</td>
<td>no</td>
<td>yes</td>
<td>MTZ, GEN and CIP</td>
<td>Death</td>
<td>Porcheret et al., 2002</td>
</tr>
<tr>
<td>2003</td>
<td>56/M</td>
<td>Diabetes mellitus type 2, subependymoma of the fourth ventricuie</td>
<td>no</td>
<td>Trichomonas sp.</td>
<td>no</td>
<td>yes</td>
<td>MTZ, PTZ and TOB</td>
<td>Clinical improvement</td>
<td>Lewis et al., 2003</td>
</tr>
<tr>
<td>2004</td>
<td>58/M</td>
<td>Oesophagus adenocarcinoma</td>
<td>no</td>
<td>Trichomonas tenax</td>
<td>yes</td>
<td>yes</td>
<td>MTZ, PTZ and GEN</td>
<td>Death</td>
<td>Mallat et al., 2004</td>
</tr>
<tr>
<td>2006</td>
<td>55/M</td>
<td>Alcohol abuse</td>
<td>no</td>
<td>Trichomonas sp.</td>
<td>yes</td>
<td>yes</td>
<td>MTZ, AMC</td>
<td>Clinical improvement</td>
<td>Wang et al., 2006</td>
</tr>
<tr>
<td>2007</td>
<td>46/F</td>
<td>Alcoholic liver cirrhosis</td>
<td>no</td>
<td>Trichomonas sp.</td>
<td>no</td>
<td>yes</td>
<td>MTZ, CTX</td>
<td>Death</td>
<td>Gilroy et al., 2007</td>
</tr>
<tr>
<td>2008</td>
<td>33/F</td>
<td>Heart transplantation</td>
<td>yes</td>
<td>Trichomonas tenax</td>
<td>yes</td>
<td>yes</td>
<td>MTZ, PTZ</td>
<td>Clinical improvement</td>
<td>Bellanger et al., 2008</td>
</tr>
<tr>
<td>2009</td>
<td>40/F</td>
<td>none</td>
<td>no</td>
<td>new Tetra trichomonas species</td>
<td>yes</td>
<td>yes</td>
<td>MTZ, AMX</td>
<td>Clinical improvement</td>
<td>Mantini et al., 2009</td>
</tr>
</tbody>
</table>

M, male; F, female; NA, not available; MTZ: Metronidazole; TET: Tetracycline; GEN: Gentamicin; CLD: Clindamycin; CEF: Cephalotin; AMK: Amikacin; CFP: Cefpirom; CIP: Ciprofloxacin; PTZ: Piperacillin-Tazobactam; TOB: Tobramycin; AMC: Amoxicillin-clavulanate; CTX: Ceftriaxone; AMX: Amoxicillin.
sponsible for the disease because of being a common commensal of the oral cavity but several other species can also be involved. As suggested by others, Trichomonad parasites probably enter the respiratory tract by aspiration of oropharyngeal secretions. Here, the portal of entry in our patient is difficult to explain, no broncho-pleural fistula being seen at CT scan. Trichomonas parasites are not strictly site-specific, as shown by the repeated isolation of T. vaginalis from respiratory-tract specimens (Carter and Whithaus, 2008). To date, at least six Trichomonads have been isolated from human lungs: T. tenax, T. vaginalis, Pentatrichomonas hominis, Tritrichomonas foetus, Tetratrichomonas gallinarum, and a newly described Tetratrichomonas species (Mantini et al., 2009). Unfortunately, species identification within the Trichomonads is tricky and requires well-trained microscopists and fresh samples. As shown here and in previous reports, there is no doubt that diagnosis could benefit from the use of molecular tools such as ITS rDNA sequencing (Jongwutiwes et al., 2000; Mallat et al., 2004; Bellanger et al., 2008; Mantini et al., 2009).

To the best of our knowledge, the presence of Trichomonads in the pleural cavity has been reported in only 17 cases in the literature since 1966 (reviewed in Table 1). *Trichomonas tenax* accounts for most of these cases. Molecular identification has been performed only for a few of them but illustrate that distinct species could be responsible for pleural trichomonosis. As suggested by others, Trichomonad parasites probably enter the respiratory tract by aspiration of oropharyngeal secretions. In the lungs, proliferation of Trichomonads seems to depend on both the presence of bacteria, such as oral streptococci, or anaerobes and microaerophilic conditions (Radosavljevic-Asic et al., 1994; Lewis et al., 2003; Wang et al., 2006; Bellanger et al., 2008). Indeed, as shown in Table 1, bacterial co-infection, that probably allows Trichomonads to feed, is a frequent event, being noted in at least 13 of the 17 patients. All patients were given metronidazole (usually at a dosage of 1.5g IV per day) and most have a favourable outcome. The finding that all cases involving *T. tenax*, were mix infections with bacteria could suggest its moderate pathogenicity by comparison to other Trichomonads species being probably surinfecting agent. Previous studies demonstrate that some species such as *T. vaginalis* and *T. foetus* can induce apoptosis in mammalian cells but to the best of our knowledge, no experiments have been run with *T. tenax* (Singh et al., 2004; Chang et al., 2006). Regarding the recent literature the recovery of Trichomonads in human lungs could represent the «tip of the iceberg», Trichomonad flagellates being highly prevalent in patients with *Pneumocystis pneumonia* or acute respiratory-distress syndrome (Duboucher et al., 2007a). Additionally, the zoonotic potential of Trichomonads has recently been highlighted with the description, in humans, of a flagellate close in appearance to the avian *Trichomonad T. gallinarum* (Kutisova et al., 2005). The aim of this report was to draw microbiologists’ attention to the potential occurrence of Trichomonad parasites in respiratory specimens and to underline the importance of direct microscopic examination of fresh, unfixed samples as well as the utility of molecular methods for species identification. It is reasonable to consider that until the question of the possible pathogenicity is clearly resolved, metronidazole should be given. Several decades after their initial discovery, Trichomonad parasites have returned to the spotlight.

ACKNOWLEDGMENTS

We are grateful to Bernard Besse and Olivier Barre for their technical assistance.

REFERENCES

