New Microbiologica, 34, 409-412, 2011

Serological and pathogenic characterization of Erysipelothrix rhusiopathiae isolates from two human cases of endocarditis in Japan

Kazuki Harada1, Kennichiro Amano2, Shinnich Akimoto2, Kinya Yamamoto3, Yoshihiro Yamamoto4, Katsunori Yanagihara4, Shigeru Kohno4, Naoki Kishida5, Toshio Takahashi1

1Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan; 2Matsuoka Research Institute for Science, 5-19-21 Midori-cho, Koganei, Tokyo, Japan; 3National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo, Japan; 4Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki, Japan; 5Department of General Internal Medicine and Infectious Diseases, Teine Keijinkai Hospital, 12-1-40 Maedaichijou, Teine-ku, Sapporo, Hokkaido, Japan

SUMMARY

We characterized the serological and pathogenic properties of two Erysipelothrix rhusiopathiae isolates from human cases of infective endocarditis in Japan. One isolate was recovered from a fisherman, and was identified as serovar 3, which is known to be prevalent among fish isolates. This strain exhibited high virulence in mice but was avirulent in swine. Another was untypable, and avirulent in both mice and swine. Our results suggest that various serological and pathogenic types of E. rhusiopathiae can induce human endocarditis. This is the first report to characterize the pathogenicity of E. rhusiopathiae isolates from human endocarditis.

KEY WORDS: Endocarditis, Erysipelothrix rhusiopathiae, Human infection, Pathogenicity, Serovar

Erysipelothrix rhusiopathiae is a primary pathogen of swine as well as a cause of sporadic disease outbreaks in humans and other animals. The organism is distributed worldwide and has been isolated from the organs of many wild and domestic mammals, birds, reptiles, amphibians and fish (Wood and Henderson, 2006). Infection in humans is usually a consequence of contact with infected animals, or their products or waste. Thus, it is prevalent in abattoir workers, butchers, farmers, veterinarians, fishers, fish handlers and housewives (Brooke and Riley, 1999). There are three well-defined clinical syndromes in humans that are caused by E. rhusiopathiae infection. The most common is erysipelas, characterized by swelling and redness of the infected parts of the body, typically the fingers and hands. Less common but more severe is a diffuse cutaneous form. The most serious manifestation of E. rhusiopathiae infection is a bacteremia illness, where endocarditis has almost always been linked. Although bacteremia and endocarditis are relatively uncommon, these types of diseases appear to be increasing in incidence (Brooke and Riley, 1999).

Serovars and pathogenicity in test animals, such as mice and pigs, are significant factors in characterizing strains of Erysipelothrix strains. Previously, we reported these characteristics of the strains isolated from a wide variety of animals including pigs, cows, chickens, dogs, and various species of fish (Takahashi et al., 2008). For human strains, there are only two publications related to serotyping of the organism (Cross and Claxton, 1979; Kodera et al., 2006). In this...
study, we characterized serovar and pathogenicity in mice and pigs for two *E. rhusiopathiae* isolates from human endocarditis cases in Japan. To our knowledge, this is the first report to characterize the pathogenicity of *E. rhusiopathiae* isolates that cause endocarditis in humans.

Two *E. rhusiopathiae* isolates, strains Nagasaki and Sapporo, from blood samples of two different human endocarditis cases were used. These cases had the chief complaint of systemic edema on both legs, and were found to develop a vegetation on either the tricuspid or the mitral valve based on echocardiogram. In addition, these cases also developed glomerular nephritis. Bacterial isolation and diagnosis were carried out at Sasebo City General Hospital and Teine Keijinkai Hospital. Background, clinical signs and examination results related to the strain Nagasaki have been reported previously (Yamamoto et al., 2008). The strain Sapporo was identified by Gram staining, species-specific polymerase chain reaction (PCR) (Takeshi et al., 1999) and Api Coryne (BioMerieux, Craponne, France).

The serovars of the two strains were determined using an agar gel double-diffusion precipitation system against typing sera representing serovars 1a, 1b, 2–26 and type N of *Erysipelothrix*, as described previously (Takahashi et al., 2008).

For pathogenicity tests, 95 four-week-old female outbred strain ddY mice (Nippon SLC, Hamamatsu, Japan) were used. Five female and five castrated male Yorkshire swine were used when they were 10–11 weeks old. These swine were conventionally farrowed and raised in confinement. The sera of the swine had growth agglutination titers (Sawada et al., 1979) of <1:8. Preparation of inocula and the inoculation of mice and pigs were carried out according to previous protocols (Takahashi et al., 2008). A 0.1 mL volume of 10⁰ to 10⁶ dilutions of each isolate (approximately 10⁶ CFU) was inoculated subcutaneously into five mice. The LD₅₀ values were determined using the method of Karber (1931), based on mortality rates recorded 10 days after exposure. At the same time, three pigs were inoculated intradermally with 0.1 mL (approximately 10⁶ CFU) of the Nagasaki strain and two pigs were inoculated with the Sapporo strain. Their clinical signs were observed every day for 14 days after exposure. All animal studies were conducted in accordance with Japanese law on Welfare and Management of Animals.

The present results were summarized together with a previous case in Japan (Kodera et al., 2006) in Table 1. Presently, the genus *Erysipelothrix* contains three main species, *E. rhusiopathiae*, *E. tonsillarum* (Takahashi et al., 2008), and *E. inopinata* (Verbarg et al., 2004). There have previously been many reports about human cases of *Erysipelothrix* endocarditis, all of them due to in-

TABLE 1 - Origins, sources, serovars and levels of pathogenicity in mice and swine for *Erysipelothrix* isolates from all three cases of human endocarditis in Japan.

<table>
<thead>
<tr>
<th>Year of case report</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of isolate</td>
<td>None</td>
<td>Nagasaki</td>
<td>Sapporo</td>
</tr>
<tr>
<td>Origin (Sex, age, and occupation)</td>
<td>Male, 67 yr, fisherman</td>
<td>Male, 58 yr, fisherman</td>
<td>Male, 40's, unknown</td>
</tr>
<tr>
<td>Source</td>
<td>Blood</td>
<td>Blood</td>
<td>Blood</td>
</tr>
<tr>
<td>Bacterial identification</td>
<td>E. rhusiopathiae</td>
<td>E. rhusiopathiae</td>
<td>E. rhusiopathiae<sup>d</sup></td>
</tr>
<tr>
<td>Serovar</td>
<td>1<sup>b</sup></td>
<td>3<sup>d</sup></td>
<td>Untypable<sup>d</sup></td>
</tr>
<tr>
<td>Pathogenicity for mice (Log LD₅₀)</td>
<td>Not tested</td>
<td>0.6<sup>d</sup></td>
<td>>8.9<sup>d</sup></td>
</tr>
<tr>
<td>Pathogenicity for swine (Clinical sign<sup>e</sup>)</td>
<td>Not tested</td>
<td>None<sup>d</sup></td>
<td>None<sup>d</sup></td>
</tr>
</tbody>
</table>

^{a,b}These cases were reported by Kodera et al. (2006)^a and Yamamoto et al. (2008)^b; ^cClinical signs including pyrexia, claudication, erythema, and death; ^dResults from this study.
fection by *E. rhusiopathiae*, but not other species in the genus (Brooke and Riley, 1999). In Japan, a total of three cases of *Erysipelothrix* endocarditis in humans have been identified (Kodera et al., 2006; Yamamoto et al., 2008), and these isolates were identified as *E. rhusiopathiae*. This particular species is a significant causative organism of human infective endocarditis. Serovars of *Erysipelothrix* spp. have been extensively investigated to determine the origins of isolates. Most isolates from swine erysipelas belong to serovars 1a, 1b and 2 (Takahashi et al., 1996), while serovar 7 strains are usually associated with endocarditis in dogs (Takahashi et al., 2000). There is little information regarding serovars in human cases of *Erysipelothrix*. In this study, the strain Nagasaki was typed as serovar 3. This serovar was observed among strains of fish origin from our previous study (Takahashi et al., 2008), although serovars 2, 5, and 9 and 1, 2, 5, 6, 8, 9, 10, 11, 14 and type N were also observed among isolates from retail and marine species of fish, respectively (Hashimoto et al., 1974; Stenström et al., 1992).

Yamamoto et al. (2008) suggested that the patient was infected due to occupational exposure because he was a fisherman (Brooke and Riley, 1999). The present serological findings support their suggestion. In the other case, Kodera et al. (2006) also reported an *Erysipelothrix* endocarditis case in a fisherman, and the isolate was typed as serovar 1b, the prevalence of which in fish was previously reported (Hashimoto et al., 1974). The strain Sapporo was untypable using all antiserum, suggesting that it may be an unknown and/or new serovar that is yet to be classified (Hassanein et al., 2001). Such untypable strains represent a major population of bovine (Hassanein et al., 2001) and poultry isolates (Nakazawa et al., 1998), and a minor population of porcine isolates (Takahashi et al., 1996). However, it was confirmed that the patient had no history of contact with these animals. Likewise, human cases of *Erysipelothrix* infection, without any contact history, have been reported (Schuster et al., 1993). To identify the *E. rhusiopathiae* infection route other than occupational exposure, further epidemiological investigation is required.

Pathogenicity in mice and swine has been investigated in a variety of *Erysipelothrix* strains. Mice are very susceptible to *Erysipelothrix* infection, and thus most of the strains are pathogenic in mice. In contrast, pathogenicity in pigs is observed only in strains belonging to limited serovars, such as 1a, 1b, and 2 (Takahashi et al., 2008). In this study, the strain Nagasaki was highly virulent in mice (log LD₅₀ = 0.6 CFU), but avirulent in swine. This result was similar to that in serovar 3 isolates from fish in our previous study (Takahashi et al., 2008), and thus further supports the suggestion that this strain originated from fish.

The strain Sapporo was avirulent in both mice (log LD₅₀ = >8.9 CFU) and swine. Such avirulence was also occasionally observed in untypeable strains (Hassanein et al., 2003) and strains belonging to serovars 1b, 2, 4, 9, 11, 12, 13, 15, 17, 22 and type N (Hassanein et al., 2003; Takahashi et al., 2008). The present results suggest that strains virulent in test animals and avirulent strains can cause human infective endocarditis. For *E. rhusiopathiae*, several virulence factors, such as neuraminidase, hyaluronidase, surface protein, and capsule, have been identified and may be involved in the pathogenesis of disease in animals (Shimoji, 2000). However, the functions of these virulence factors in humans remain to be elucidated.

The present results show that the two *E. rhusiopathiae* isolates of human origin clearly have different characteristics as demonstrated by the results of the serotyping and pathogenicity tests. This implies that a variety of types of *E. rhusiopathiae* can be implicated with human infective endocarditis. Unfortunately, it is likely that infections by *E. rhusiopathiae* in humans are under-diagnosed because of the resemblance it bears to other infections, and the difficulties involved with isolation and identification (Brooke and Riley, 1999). This may result in a decrease in the chance of further investigating *Erysipelothrix* strains. A greater awareness by clinicians of human infection by *Erysipelothrix* is desirable.

REFERENCES

