Comparison of the Cobas Ampliprep™/Cobas TaqMan™ HBV Test versus the Cobas Amplicor HBV monitor for HBV-DNA detection and quantification during antiviral therapy

Tiziano Allice1, Francesco Cerutti1, Fabrizia Pittaluga1, Silvia Varetto1, Silvia Gabella1, Alfredo Marzano2, Alessandro Franchello2, Valeria Ghisetti1

1Microbiology Laboratory; 2Gastroenterology Department and Liver Transplantation Centre, Molinette Hospital, Turin, Italy

Performances of the new automatic system COBAS AmpliPrep™/COBAS TaqMan™ 48 (CAP/CTM) (Roche, Branchburg, NJ) for HBV DNA extraction and real-time PCR quantification were assessed and compared with the endpoint PCR COBAS AMPLICOR HBV Monitor (CAHBM, Roche). Analytical evaluation with proficiency panels from UK National External Quality Assessment Scheme (UK NEQAS) over a 1-year period of distribution showed that CAP/CTM correctly measured HBV DNA levels with a close correlation between expected and observed values (r=0.995). Clinical evaluation as tested with samples from 11 HBsAg-positive patients undergoing antiviral therapy (71 serial specimens of plasma), demonstrated excellent correlation with CAHBM (r=0.958, mean difference in quantitation: 0.14 log10 IU/ml), but CAP/CTM detected longer period of residual viremia. HBV DNA reduction was much higher in the combination schedule (Lamivudine+Adefovir), than in Adefovir monotherapy (5.1 vs. 3.5 logs). In conclusion, CAP/CTM allows for an accurate and standardized quantification of HBV DNA in high through-put laboratories. Due to its high sensitivity, it may further improve the detection of emerging drug resistance strains and the assessment of antiviral therapy.

KEY WORDS: Quantification, HBV DNA, TaqMan, Automation, Antiviral therapy

INTRODUCTION

Hepatitis B virus (HBV) infection is a major cause of chronic liver disease. It is estimated that nearly 2 billion people worldwide are infected by HBV and more than 350 million have persistent and chronic infection (Yim and Lok, 2006). HBV-carriers have a high risk of developing long-term sequelae of hepatitis B, including cirrhosis and hepatocellular carcinoma. In countries at moderate prevalence of HBV infection, like Italy, HBV-related cirrhosis accounts for nearly 25% of the indications to for liver transplantation in reference centres.

Post-transplantation outcome largely depends on the prevention of allograft HBV reinfection, such as it is achieved with specific immunoprophylaxis and anti-HBV therapy (Salizzoni et al., 2005).

Antiviral therapy against HBV is currently based on nucleos(t)ide analogues that have dramatically improved chronic hepatitis B management including the prevention of allograft reinfection in...
liver transplantation for HBV-related disease. The success of antiviral therapy requires highly sensitive tests for monitoring HBV DNA levels in plasma, whose main purposes is to define the activity of HBV infection, the selection of patients for treatment and the efficacy of antiviral therapy identifying the development of HBV drug-resistant strains (Werle et al., 2004; Yim and Lok, 2006).

Polymerase Chain Reaction (PCR) allows a very sensitive quantification of HBV DNA that can be achieved with either the end-point or real-time technology, both commercially available for HBV DNA. Quantification with end-point PCR is assessed at the end of the reaction; requires a post-PCR step to detect the amplified target, it is labour intensive, prone to contamination and suffers from a narrow dynamic range, allowing quantification within 3-4 log10. In fact, results obtained with the end-point PCR are subjected to errors due to the “plateau” effect, when the efficiency of PCR is at its minimum due to the exhaustion of reagents, thus affecting the quantification of moderate-high levels of viremia.

Real-time PCR is designed to quantify nucleic acid in the exponential phase of the reaction through the evaluation of the threshold cycle (Ct) when amplified products begin to be detected. For this reason, real-time PCR allows a more reliable and precise quantification over a much wider dynamic range without a post-PCR step. If many are the advantages of nucleic acid amplification by real-time PCR are many, reliable results also depend on sample preparation and nucleic acid extraction from biologic specimens is the most technically demanding step of PCR-based assays.

Manual specimen preparation is labour-intensive, a great source of run-to-run variability and specimen-to-specimen contamination. As a result, there is a growing clinical need for automated sample processing systems to provide accurate and reliable quantification of nucleic acid for clinical purposes.

The recently introduced real-time PCR technique for HBV DNA quantification represents the method of choice compared to previous, conventional end-point PCR due to a very sensitive quantification of viral load over a wide dynamic range as it is required for HBV infected patients (Loeb et al., 2000; Chen et al., 2001; Ide et al., 2003; Mukaide et al., 2003; Leb et al., 2004; Steltz et al., 2004; Sum et al., 2004; Weiss et al., 2004; Gordillo et al., 2005; Zhao et al., 2005; Lole et al., 2006).

Since sample preparation is a major weakness in molecular tests, improvements are constantly introduced, with the purpose of decreasing the variability of the techniques and the risk of contamination, like ready-to-use reagents and automation of the extraction procedure. The COBAS AmpliPrep™/COBAS TaqMan™ HBV (CAP/CTM HBV) (Roche Molecular Systems, Inc., Branchburg, NJ) is a fully automated real-time PCR system, consisting of two integrated platforms: the COBAS AmpliPrep™ for the automated nucleic acid extraction from plasma specimens and the COBAS TaqMan™ 48, a real-time PCR assay based on the TaqMan™ technology. The system has recently been developed and introduced on the market (Weiss et al., 2004; Hochberger et al., 2006, Allice et al., 2007). CAP/CTM is suitable for large routine series and has been demonstrated to equally quantitate HBV genotype A through G (Weiss et al., 2004; Hochberger et al., 2006, Allice et al., 2007).

In the present study, performances of CAP/CTM HBV were evaluated and compared with the end-point PCR assay COBAS AMPLICOR HBV Monitor™ (CAHBM) (Roche Molecular Systems, Inc, Branchburg, NJ). Analytical sensitivity and precision were assessed with HBV proficiency panels from the UK National External Quality Assessment Scheme (UK NEQAS) over a 1-year period of distribution and on HBV DNA reference standards from Acrometrix (Acrometrix Corp., Benicia, CA).

Correlation and differences in DNA quantification were evaluated in specimens from patients with chronic HBV hepatitis on antiviral therapy. Discordant results were evaluated with a more sensitive home-made reference PCR for HBV DNA.

MATERIALS AND METHODS

Analytical evaluation
The evaluation of the assay was carried out analysing the UK National External Quality Assessment Scheme (UK NEQAS) proficiency panels for HBV DNA quantification sent to par-
Participants from September 2005 to July 2006 (3 panels, 12 specimens). Panels were distributed by NEQAS as freeze-dried plasma and participants were requested to reconstitute the samples by adding 500 µl DNase-free water. For CAP/CTM testing, 550 µl HBV DNA-negative plasma were added to obtain the final working volume of 1050 µl as requested by the system. CAP/CTM results were reported to the UK NEQAS for each distribution. Detection rate and correlation with expected values as stated by the UK NEQAS reports, were analysed.

To test CAP/CTM reproducibility, a commercially available panel of HBV DNA standards at concentrations of 20,000, 2,000 and 200 IU/ml (OptiQuant HBV-DNA; Acrometrix Corp., Benicia, CA) was used in four different runs in subsequent days and interassay coefficient of variation (CV%) was evaluated.

Clinical evaluation
Serial plasma specimens (N=71) from 11 HBsAg positive patients with HBV chronic disease (10 anti-HBe positive, 1 HBeAg positive) and undergoing antiviral therapy with Lamivudine (LAM) or Adefovir (ADF) (5 patients) were tested with CAP/CTM. These specimens were sent to the Microbiology Laboratory, Molinette Hospital of Turin for routine quantitative HBV DNA testing by the CAHBM. Patients were followed for a mean of 542 days (range 377-974 days) after the introduction of ADF due to the onset of lamivudine-resistant and HBV DNA was evaluated in plasma every three months. Aliquots of plasma were stored at -20°C before testing with CAP/CTM.

HBV DNA quantification

COBAS Amplicor™ HBV Monitor (CAHBM)

The COBAS Amplicor™ HBV Monitor System is an end-point PCR test for HBV DNA quantification associated with a manual DNA extraction from 100 µl of plasma sample. The sensitivity of CAHBM is 200 copies/ml (~74 IU/ml, conversion factor: 2.7 copies per IU) with a linear range up to 200,000 copies/ml.

Nested-PCR for HBV DNA detection

A reference home-made nested-PCR for the core gene of HBV (Ghisetti et al., 2004) was assessed on CAP/CTM and CAHBM discordant samples. Two sets of primers mapping the core gene from position 2230-2660 and leading to a final 221 bp amplified product were used. Five µl of DNA extracted from 200 µl plasma with a manual procedure based on nucleic acid silica-gel affinity (QIagen, MI, I) were subjected to PCR. The sensitivity of the assay was previously established at 10 copies/5 µl of DNA, testing known amount of a plasmid containing the entire HBV genome.

HBV polymerase gene mutants

HBV lamivudine resistant strains were detected with a reverse hybridization line probe assay (INO-LIPA, Innogenetics, Ghent, Belgium) after
amplifying domains B and C of the viral polymerase gene with specific primers.

Serologic markers of HBV infection
HBV serology was performed with the ChLIA method (Abbott Laboratories, Abbott Park, IL USA).

Statistical analysis
Mean and standard deviation were calculated using conventional statistical tests. Correlation between CAP/CTM and CAHBM was determined by linear regression analysis and mean differences in quantification by the Bland-Altman plot. HBV DNA results were expressed as log_{10} IU/ml. Differences were considered statistically significant for p value <0.05 (Student T test).

RESULTS
CAP/CTM analytical performances for HBV DNA quantification were assessed on the UK NEQAS distributions from September 2005 to July 2006 (3 distribution, 12 specimens) and on HBV DNA reference standards. Clinical evaluation was assessed on 71 specimens from 11 HBsAg-positive patients with chronic hepatitis B undergoing anti-HBV therapy.

Analytical evaluation
Twelve freeze-dried plasma specimens derived from 3 HBV DNA UK NEQAS panels, reconstituted with 500 µl Dnase-free water plus 550 µl HBV DNA-negative plasma to obtain the final working volume of 1050 µl, were tested with CAP/CTM. Expected values ranged from 0.3 to 4.63 log_{10} IU/ml. HBV genotype distribution included HBV genotype D in 10 and genotype A in 2 specimens, respectively.

CAP/CTM observed results were very close to the expected ones for each NEQAS specimens with excellent correlation (r= 0.995) and linearity (R^2= 0.989). For expected values of 1, 0.49, 3.64, 2.72, 1.32, 0.79, 4.63, 3.24, 4.15, 3.67, 1.73 and 0.3 log_{10} IU/ml reported values of 1.17, 0.65, 3.98, 2.79, 1.59, 1.12, 4.94, 3.33, 4.91, 3.97, 1.82 and 0.52 log_{10} IU/ml were observed, respectively (Table 1). Differences between expected and observed values ranged from -0.07 to -0.76 logs. Bland-Altman plot demonstrated that the mean difference between expected vs observed values for averaged quantitation logs was -0.26±0.19 (Fig. 1). Only one samples (#8026, genotype D) with an HBV DNA level >4 logs gave a significantly different results (4.91 log vs. 4.15 expected value, Table 1, Figure 1).

Reproducibility of CAP/CTM was evaluated on HBV DNA standards from AcroMetrix (expected value: 20,000, 2,000 and 200 IU/ml). CAP/CTM observed values were very close to the expected ones: 27,550, 2,560 and 186 IU/ml for the 20,000, 2,000 and 200 IU/ml standards. Interassay CV for standards 200, 2x10^3 and 2x10^4 IU/ml were 37%, 18% and 15%, respectively.

TABLE 1 - Evaluation of 12 HBV DNA standards from 3 NEQAS proficiency panels with CAP/CTM system.

<table>
<thead>
<tr>
<th>Expedition month/day/year</th>
<th>ID</th>
<th>Genotype</th>
<th>Expected value (log_{10} IU/ml)</th>
<th>Observed value (log_{10} IU/ml)</th>
<th>Difference between expected and observed values (log_{10} IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/26/2005</td>
<td>7643</td>
<td>A</td>
<td>1</td>
<td>1.17</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>7644</td>
<td>A</td>
<td>0.49</td>
<td>0.65</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>7645</td>
<td>D</td>
<td>3.64</td>
<td>3.98</td>
<td>-0.34</td>
</tr>
<tr>
<td></td>
<td>7646</td>
<td>D</td>
<td>2.72</td>
<td>2.79</td>
<td>-0.07</td>
</tr>
<tr>
<td>03/06/2006</td>
<td>7844</td>
<td>D</td>
<td>1.32</td>
<td>1.59</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>7845</td>
<td>D</td>
<td>0.79</td>
<td>1.12</td>
<td>-0.33</td>
</tr>
<tr>
<td></td>
<td>7846</td>
<td>D</td>
<td>4.63</td>
<td>4.94</td>
<td>-0.31</td>
</tr>
<tr>
<td></td>
<td>7847</td>
<td>D</td>
<td>3.24</td>
<td>3.33</td>
<td>-0.09</td>
</tr>
<tr>
<td>07/03/2006</td>
<td>8026</td>
<td>D</td>
<td>4.15</td>
<td>4.91</td>
<td>-0.76</td>
</tr>
<tr>
<td></td>
<td>8027</td>
<td>D</td>
<td>3.67</td>
<td>3.97</td>
<td>-0.30</td>
</tr>
<tr>
<td></td>
<td>8028</td>
<td>D</td>
<td>1.73</td>
<td>1.82</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>8029</td>
<td>D</td>
<td>0.3</td>
<td>0.52</td>
<td>-0.22</td>
</tr>
</tbody>
</table>
Clinical evaluation and systems comparison

Plasma samples from 11 patients with chronic HBV LAM-resistant hepatitis submitted for routine HBV DNA testing were studied. HBV viral load was measured with CAHBM and CAP/CTM from the time ADF was started (baseline), in combination with LAM (5 patients) or alone (6 patients), then at months 6, 9 and 12. At the time samples were tested with CAP/CTM, 35 were HBV DNA positive and 36 HBV DNA negative by CAHBM (Table 2).

Concordant results were determined in 90% of samples (32 positive and 32 negative concordant samples). CAP/CTM detected HBV DNA in 4 samples (HBV DNA levels from 54 to 196 IU/ml) that tested negative by CAHBM. A more sensitive nested PCR for the core region of HBV confirmed these as true positive samples, whereas CAHBM positive/CAP/CTM negative samples (N=3) were not confirmed with the reference PCR test (false positive results with CAHBM). Comparison between CAP/CTM and CAHBM showed an excellent correlation (r=0.958, 95% CI 0.932-0.973) (Figure 2a).

Mean differences (CAHBM-CAP/CTM) for averaged logs were within 1 log: 0.14±0.71 log10 IU/ml (mean±SD) as shown in Figure 2b.

In those patients undergoing the combination schedule (LAM+ADF) of therapy, the mean reduction of HBV DNA level from baseline was 3.5 log10 IU/ml at month 6, 3.7 logs at month 9 and 5.1 logs at month 12 (Table 3).

In the ADF monotherapy group, the mean reduction of HBV DNA from baseline was 3.0 logs at month 6, 3.6 at month 9 and 3.1 logs at month 12 (Table 3). At month 12, 8 out of 11 patients (10/11 with CAHBM) were below the lower detection limit of the CAP/CTM assay while 3 patients, two on LAM+ADF and one on ADF monotherapy were still HBV DNA positive (HBV DNA values: 2.5, 2.3 and 3.9 log IU/ml, respectively). CAHBM detected HBV DNA in only one of the 3 patients. Therefore, CAP/CTM detected residual HBV DNA for longer periods than CAHBM.

The reduction of HBV DNA levels after 12 months of ADF administration was much more significant on the combination schedule (5.1 log decline) than on ADF monotherapy (3.5 log decline).

TABLE 2 - Clinical performance of CAP/CTM HBV assay compared to COBAS AMPLICOR HBV Monitor (CAHBM) in a group of 71 samples from HBsAg-positive patients.

<table>
<thead>
<tr>
<th>CAP/CTM (N. of samples)</th>
<th>Cobas Amplicor Monitor (N. of samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>32</td>
<td>4*</td>
</tr>
<tr>
<td>Negative</td>
<td>3§</td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

*True positive samples by CAP/CTM as confirmed by a more sensitive reference nested-PCR assay. See text for details. §False positive samples by Cobas Amplicor Monitor as confirmed by a more sensitive reference nested-PCR assay. See text for details.
suggesting a stronger effect of the association of two or more drugs against HBV.

DISCUSSION

Quantification of HBV DNA as a marker of viral replication, is the most direct and reliable method for the accurate management of chronic hepatitis B. Highly sensitive and reproducible molecular tests are required to assess the efficacy of the treatment and the development of HBV drug-resistant strains. End-point PCR techniques for HBV DNA have shown a limited dynamic range, usually within 4 logs, affecting the quantification of moderate-high levels of viremia that are usually present in overt HBV disease (Mukaide et al., 2003; Kohmoto et al., 2003). On the contrary, real-time PCR is designed to quantify nucleic acids in the exponential phase of the reaction allowing for a more reliable and precise quantification over a much wider dynamic range. Reliable PCR results depend on sample preparation that is technically demanding and a potential source of run-to-run variability and sample contamination (Weiss et al., 2004; Gordillo et al., 2005; Lindh and Hannoun, 2005). Real-time PCR
TABLE 3 - Evaluation of HBV DNA decrease (log_{10} IU/ml) in LAM-resistant patients undergoing LAM+ADF combination therapy (5 patients) or ADF monotherapy (6 patients) from the time ADF has been administered (baseline value).

<table>
<thead>
<tr>
<th>Months of therapy from baseline*</th>
<th>Combination schedule (LAM+ADF, 5 patients)</th>
<th>Monotherapy (ADF, 6 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>12</td>
<td>5.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

*Baseline corresponded to ADF administration either as combination schedule with LAM or monotherapy.
strains, with a better definition of virologic endpoints (Fung et al., 2006; Yeon et al., 2006). The mean reduction of HBV DNA level from baseline to month 12 was higher in patients on the combination (LAM+ADF) schedule than in those on ADF monotherapy (5.1 vs. 3.5 log10 IU/ml). This data confirms a much higher genetic barrier offered by the combination schedule based on LAM+ADF than monotherapy with ADF alone (Rapti et al., 2007). CAP/CTM was also more specific and less prone to contamination than the end-point PCR.

In conclusion, this study provides evidences that CAP/CTM allows for a rapid and accurate quantification of HBV DNA levels in patients on antiviral therapy. The system is a complete labour-saving platform allowing for a standardized quantification of HBV DNA in high throughput laboratories and can be considered an important step for the clinical application of PCR data in HBV disease. Due to its high sensitivity, it may further improve the detection of emerging drug resistance strains and the assessment of antiviral therapy.

REFERENCES

