Features of *Salmonella* serovars among food handlers in Kyushu, Japan

Koichi Murakami¹, Tatsuo Ishihara², Kazumi Horikawa¹, Takahiro Oda³

¹Division of Pathology and Bacteriology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Mukaizano, Dazaifu, Fukuoka, Japan;
²CRC Inc., Matsushima, Higashi-ku, Fukuoka, Japan;
³Food and Nutrition Section, Nakamura Gakuen Junior College, Bejfu, Jonan-Ku, Fukuoka, Japan

Salmonella were isolated from 106 (0.032%) of 331,644 fecal samples from food handlers, and from 144 of 11,478 fecal samples from symptomatic patients in Japan to determine the incidence and features of *Salmonella* serovars among food handlers. *S. enterica* subspecies *enterica* serovar Infantis (*S. serovar Infantis*) was the dominant serovar (accounting for 48.1%), followed by *S. serovar Corvallis*, which showed poor genetic diversity, and *S. serovar Enteritidis* among food handlers. The former two serovars were not dominant among symptomatic patients. The present study demonstrates the need for education on the sanitary handling of chicken eggs and chicken meat, which are possible infectious sources of these *Salmonella* serovars.

KEY WORDS: *Salmonella*, *S. serovar Enteritidis*, food handler, food hygiene

Salmonella species are currently the most common cause of food-borne infections in Japan (National Institute of Infectious Diseases, 2000), and are organisms for which humans as carriers pose potential problems as sources of outbreaks (Cruickshank and Humphrey, 1987). Therefore, consideration of the significance of fecal carriage of *Salmonella* by food handlers is important to public health. However, there have been few studies estimating the general carrier rate, or serotyping the *Salmonella* carried asymptptomatically by such workers in wider areas such as Kyushu or Japan as a whole. The serotyping of isolates from food handlers is important in estimating the prevalence of *Salmonella* strains harbored by food handlers in the wider area. The present study was performed to determine the incidence and features of *Salmonella* among food handlers compared with serovars from symptomatic patients in the same period in Kyushu, Japan. *Salmonella* serovars were isolated from 106 (0.032%) of 331,644 fecal samples from food handlers; *S. enterica* subspecies *enterica* serovar Infantis (*S. serovar Infantis*) was the dominant serovar, followed by *S. serovar Corvallis* and *S. serovar Enteritidis*. This study provides information on these serovars, and demonstrates the need for further education on food hygiene, including methods of sanitary handling of chicken eggs and chicken meat, which are possible infectious sources of *S. serovar Infantis*, *S. serovar Corvallis* and *S. serovar Enteritidis*. From November 1999 to May 2000, fecal samples (331,644) were collected from food handlers working in food factories, hotels, restaurants, supermarkets or companies that provide food services for offices, factories, hospitals, schools, daycare centers and other facilities, in eight pre-

Corresponding author
Dr. K. Murakami
Pathology and Bacteriology Division
Department of Health Science
Fukuoka Institute of Health and Environmental Sciences
Mukaizano 39, Dazaifu, Fukuoka 818-0135, Japan
E-mail: murakami@fihes.pref.fukuoka.jp
fectures in Kyushu, Japan. Fecal samples (11,478) from patients with diarrhea were collected from 800 clinical facilities in eight prefectures in Kyushu and Kinki in Japan during the same period. These symptomatic patients ranged in age from 1 to 84 years (patients who were 1 to 10 years old accounted for 59% of the total, while those who were 11 to 84 years old accounted for 41%).

Samples were cultured in tubes with 10 ml of modified Rappaport broth for 18 h at 37°C, then streaked for isolation on differential plating media, using Salmonella-Shigella agar plates, and incubated for 24 h at 37°C. Potential Salmonella colonies were then identified as Salmonella, and were serotyped using somatic (O) antisera and flagella (H) antisera as described previously (Murakami et al., 2001).

Sixteen isolates of S. serovar Corvallis in this survey were characterized by pulsed-field gel electrophoresis (PFGE) analysis. PFGE analysis was performed as described previously (Murakami et al., 1999b), with brief modifications. After appropriate preparations for restriction endonuclease digestion, the DNA in each plug was digested with 20 U Xba I (Takara Bio Inc., Otsu, Japan) at 37°C for 15 h. Electrophoresis was performed at 200 V for 22 h with a switched pulse time of 5-50 s at 14°C. DNA fragment patterns were assessed visually. The presence and absence of a band were assigned different pulsed-field profiles (PFPs). Xba I digestion is more advantageous for distinguishing S. serovar Corvallis from isolates with different genotypes than PFGE with Bln I digestion (data was not shown). Thus, we used Xba I digestion in this study.

Salmonella were isolated from 106 (0.032%) of the 331,644 fecal samples from the food handlers, and from 144 (1.25%) of the 11,478 fecal samples from symptomatic patients. The monthly numbers of isolates of Salmonella from food handlers were as follows: 23 (0.066%) from 34,838 samples in November 1999; nine (0.020%) from 44,669 samples in December; six (0.014%) from 41,900 samples in January 2000; five (0.012%) from 43,513 samples in February; nine (0.020%) from 44,604 samples in March; 14 (0.024%) from 59,459 samples in April; and 40 (0.064%) from 62,661 samples in May. Table 1 shows the numbers of isolates from food handlers and symptomatic patients. The dominant serovar among 16 serovars and two untypable isolates from the food handlers was S. serovar Infantis, followed by S. serovar Corvallis and S. serovar Enteritidis. Among the 18 serovars and one untypable isolate from the patients, the dominant serovar was S. serovar Enteritidis. From both groups of samples, 10 serovars of Salmonella were isolated in common. S. serovar Corvallis comprised 16 (15.1%) of 106 isolates from food handlers and none from symptomatic patients.

FIGURE 1 - Profiles of 18 isolates of Salmonella serovar Corvallis, obtained using pulsed-field gel electrophoresis. Eleven isolates of food handlers showed pulsed-field profile A (lane A) and five isolates showed pulsed-field profile B (lane B). Lane M shows the DNA size standard, a bacteriophage lambda consisting of concatemers starting at 48.5 kilobase pairs. Lane R shows the reference pulsed-field profile of an isolate obtained from river water.
PFGE analysis of the fragments obtained by XbaI digestion of genomic DNA from 16 isolates of S. serovar Corvallis showed only two distinct PFPs; 11 isolates showed PFP A and five isolates showed PFP B, with 16 resolvable fragments, ranging from approximately 10 to 582 kilobase pairs. According to a previous study (Yamada et al., 1999), S. serovar Corvallis accounted for 28.0% of all isolates (1,125) from human and other sources, and many isolates of this serovar (93.7%) were obtained from food handlers in Miyazaki Prefecture, Kyushu, Japan, between 1996 and 1999. In the present study, S. serovar Corvallis was frequently isolated only from food handlers, not from symptomatic patients. Clearly, the prevalent Salmonella serovars found in the general population differ between countries, residential areas and human groups, depending on a large number of factors including age bracket, occupation, dietary preferences, eating habits, food processing, distribution practices, and so on. Therefore, we cannot explain why S. serovar Infantis and serovar Corvallis, which were not dominant serovars among symptomatic patients, were often harbored by food handlers in Kyushu, Japan in this period of time.

<table>
<thead>
<tr>
<th>Serovar</th>
<th>No. of isolates (%)</th>
<th>Food handlers</th>
<th>Symptomatic patients</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>S. enterica serovar Infantis</td>
<td>51 (48,1%)</td>
<td>9 (6,3%)</td>
<td>60 (24,0%)</td>
</tr>
<tr>
<td>C2</td>
<td>S. enterica serovar Corvallis</td>
<td>16 (15,1%)</td>
<td>16 (6,4%)</td>
<td>32 (12,8%)</td>
</tr>
<tr>
<td>C3</td>
<td>S. enterica serovar Enteritidis</td>
<td>13 (12,3%)</td>
<td>99 (68,8%)</td>
<td>112 (44,8%)</td>
</tr>
</tbody>
</table>

B
- S. enterica serovar Agona 6 (5.7%) 2 (1.4%) 8 (3.2%)
 S. enterica serovar Hafnia 1 (0.7%) 1 (0.4%)
- S. enterica serovar Paratyphi B 1 (0.9%) 2 (1.3%) 3 (1.2%)
 S. enterica serovar Stanley 1 (0.7%) 2 (0.8%)
- S. enterica serovar Typhimurium 4 (2.8%) 4 (1.6%)
 Untypable (b : -) 2 (1.9%) 2 (0.8%)

C1
- S. enterica serovar Montevideo 3 (2.8%) 1 (0.7%) 4 (1.6%)
 S. enterica serovar Oranienburg 1 (0.7%) 1 (0.4%)
- S. enterica serovar Tennessee 2 (1.9%) 2 (0.8%)
 S. enterica serovar Thompson 1 (0.9%) 2 (1.4%) 3 (1.2%)
 Untypable 1 (0.7%) 1 (0.4%)

C2
- S. enterica serovar Breda 1 (0.9%) 1 (0.7%) 2 (0.8%)
- S. enterica serovar Hadar 1 (0.9%) 1 (0.7%) 2 (0.8%)
- S. enterica serovar Litchfield 3 (2.8%) 3 (1.2%)

D
- S. enterica serovar Dublin 2 (1.4%) 2 (0.8%)
 S. enterica serovar Javiana 10 (6.9%) 10 (4.0%)
- S. enterica serovar Miyazaki 1 (0.9%) 3 (2.1%) 4 (1.6%)
 S. enterica serovar Onarimon 1 (0.7%) 1 (0.4%)
 S. enterica serovar Panama 1 (0.9%) 1 (0.4%)

E1
- S. enterica serovar Anatum 1 (0.7%) 1 (0.4%)
 S. enterica serovar London 1 (0.9%) 1 (0.4%)
 S. enterica serovar Weltevreden 2 (1.9%) 1 (0.4%)

F
- S. enterica serovar Aberdeen 2 (1.4%) 2 (0.8%)

Total 106 (100%) 144 (100%) 250 (100%)

S. enterica serovar Infantis: S. enterica subspecies enterica serovar Infantis

Salmonella serovars among food handlers
S. serovar Enteritidis, the dominant serovar among symptomatic patients, is most commonly associated with chicken egg production, and S. serovar Infantis, the dominant serovar among food handlers, is commonly associated with broiler meat production (Humphrey, 1994; Murakami et al.; 1999a, Murakami et al., 1999b), but there have been few reports on the ecology or virulence of S. serovar Corvallis. In our previous study, S. serovar Corvallis was isolated from raw chicken meat, chicken eggs, sewage and river water samples (Murakami et al., 2001), and possible reservoirs of this organism include hens and broilers. On PFGE analysis, isolates of S. serovar Corvallis had only two PFPs, demonstrating poor genetic diversity among S. serovar Corvallis isolates. Poor genetic diversity shows that the sources of infection for food handlers were not varied. Since chicken eggs and chicken meat are possible infectious sources of S. serovar Corvallis, S. serovar Infantis and S. Enteritidis for food handlers, further education on food hygiene, including methods of sanitary handling of chicken eggs and chicken meat, is important.

Previous studies have shown that asymptomatic carriers in sensitive professions, such as food handlers and caregivers, are rarely involved in the transmission of Salmonella (Buchwald and Blaser 1984; Janda and Abbott, 1998). There have been few outbreaks in which asymptomatic carriers who were food handlers or healthcare personnel were clearly shown to be the source of infection. Roberts reported that in most instances, food handlers are the victims rather than the source, and become infected from frequent contact with contaminated raw food, from tasting during preparation, or from eating leftover contaminated cooked food (Roberts, 1982). However, there have been a few reports in which food handlers, with or without symptoms, or who had children with gastrointestinal disease, were implicated as sources of infection (Khuri-Bulos et al., 1994; Maguire et al., 2000). Thus, it is important to note that contamination of food by handlers is an unusual occurrence, and such workers should be given further instruction in aspects of food hygiene, such as improvement of premises and practices in food handling, as described previously (Charles, 1982).

The present data suggest that S. serovar Infantis, S. serovar Corvallis and S. serovar Enteritidis are harbored by food handlers in Kyushu, Japan, with a relatively high frequency. Therefore, further education of food handlers is required regarding food hygiene, including information on the sanitary handling of chicken eggs and chicken meat, and the eradication of S. serovar Infantis, S. serovar Corvallis and S. serovar Enteritidis.

This work was supported in part by Daido Life Welfare Foundation, Suita, Osaka, Japan. We thank Dr. T. Yoshimura and Dr. Y. Ishiguro, Fukuoka Institute of Health and Environmental Sciences, for valuable advice.

REFERENCES

