Comparison of ELISA with shell vial cell culture method for the detection of human rotavirus in fecal specimens

Candan Cicek1, Tuba Karatas1, Imre Altuglu1, Guldane Koturoglu2, Zafer Kurugol2, Altinay Bilgie1
Departments of 1Microbiology and Clinical Microbiology, and 2Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey

SUMMARY

The aim of the study was to compare an enzyme immunoassay method with shell vial cell culture method for detection of rotavirus in fecal specimens. In addition, the correlation between laboratory results and clinical scores of patients with gastroenteritis was evaluated.

A total of 219 fecal specimens from children (ages 3 weeks to 5 years) with acute gastroenteritis submitted to pediatric emergency room were evaluated by both ELISA and shell vial cell culture. A Vesikari score was used for assessing the severity of the illness.

Among 219 stool samples tested, 107 (48.9%) were determined to be positive. Two specimens were positive by shell vial cell culture method while they were ELISA negative. According to these results the calculated sensitivity, specificity, PPV, and NPV of ELISA were 98.1%, 100%, 100%, and 98.2%, respectively. The mean severity score for the 107 episodes of rotavirus diarrhea was 11.0±3.6 compared to 4.5±1.9 for the 112 episodes of non-rotavirus diarrhea in the same population.

Our study indicates that ELISA, which is easier to perform, faster and cheaper than cell culture methods may be suitable for routine diagnosis of rotavirus infections. The severity of rotavirus positive gastroenteritis was significantly higher than that of rotavirus negative patients.

KEY WORDS: Rotavirus, shell vial cell culture, elisa, clinical scores

INTRODUCTION

Rotaviruses are responsible for 30% to 60% of all cases of diarrhea in young children throughout the world. The major effect of rotavirus infections is seen in children younger than 2 years (Singh-Naz et al., 1990). Although rotavirus infections usually are self-limiting, deaths resulting from dehydration and electrolyte imbalance are common in developing countries (Lipson and Zelinsky, 1989). The virus is responsible for an estimated 611,000 childhood deaths per year according to World Health Organization (Brooks et al., 2004; Parashar, 2006).

A rapid and accurate laboratory identification of rotavirus gastroenteritis remains important, as such testing assists the pediatrician in decisions of patient care and management. Currently a variety of methods are commercially available for rapid laboratory diagnosis in stool samples for rotavirus gastroenteritis, i.e., enzyme immunoassays, latex agglutination and immunochromatographic assays. These assays are easy to perform, require no special equipment and provide results in a short turnaround time, but false positive results are not uncommon (Eing et al., 2001; Giordano et al., 2005).
Nevertheless, electron microscopy, polyacrylamide gel electrophoresis, reverse transcriptase polymerase chain reaction and cell culture methods are used as reference methods for rotavirus detection in stool samples, because of high specificity and sensitivity. However, these methods are restricted to use because they require experienced technicians, discard tedious, expensive and time-consuming (Lipson and Zelinsky Papez, 1989; Christy et al., 1990; Lipson et al., 2001; Raboni et al., 2002). This study compared an enzyme immunoassay with shell vial cell culture method for detection of rotavirus in fecal specimens. In addition, we evaluated the correlation between laboratory results and clinical scores of patients with gastroenteritis.

MATERIAL AND METHODS

Patient population and specimen collection
Fecal specimens from 219 children (ages 3 weeks to 5 years, 3 weeks-24 months n=146, 25-60 months n=73) with acute gastroenteritis submitted to pediatric emergency room were included in the study. The study was performed during the winter season between September 2003 and May 2004. Stool specimens were collected in sterile containers from the patients on the first five days after the onset of diarrhea. A total of 219 fecal specimens obtained from 138 boys, 81 girls were evaluated by both ELISA and shell vial cell culture methods after direct microscopic examination and routine bacteriological analysis. Specimens received in the laboratory were temporarily maintained at 4°C for 24h and aliquots of stool specimens were stored undiluted at -80°C.

Direct microscopic examination and bacteriologic analysis
All of the 219 fecal specimens were examined by direct microscopy and were inoculated to blood; CIN, Skirrow, and EMB agar plates, incubated aerobically for 24h at 37°C, followed by identification for Escherichia coli, Shigella spp., Salmonella spp., Yersinia spp. and Campylobacter spp by routine diagnostic methods (Winn et al., 2006).

Cell culture
Proteolytic activation of rotavirus was performed as described previously (Lipson 1992). Briefly, a 15% (wt/vol) stool preparation was prepared in Eagles’ Minimal Essential Medium (EMEM) supplemented with 15 µg/ml trypsin (Biochrom Ag, Berlin, Germany). The suspension was vortexed and then centrifuged at 10000 g for 10 min. Supernatants were incubated at 37°C for 30 min, diluted 1:20 in EMEM supplemented with 2 µg/ml trypsin without fetal bovine serum, followed by inoculation into shell vial coverslip. Vero cell line and shell vial centrifugation method were used for rotavirus isolation as described previously (Wiedbrauk D.L. and Johnston, 1993). Briefly, 0.2 ml activated fecal specimen was inoculated into shell vial containing Vero cell monolayers on the coverslip. The vials were centrifuged at 3000 g for 60 min at 25°C. The specimen was aspirated from each vial and replaced with an isolation medium containing 1 µg/ml trypsin-TPCK and EMEM without fetal bovine serum. The vials were incubated at 37°C for 48 h. The coverslips were fixed in chilled acetone for 10 min and stained by an indirect immunofluorescence assay according to the manufacturer’s recommendations. The primary stain consisted of goat antirotavirus polyclonal antibody IgG fraction (diluted 1:5 in PBS) directed to common VP6 antigen of the group A rotavirus (Light Diagnostics, Chemicon international, USA). The secondary reagent consisted of goat anti-mouse IgG antibody FITC-conjugated (Light Diagnostics, Chemicon Internationale, USA). Coverslips were examined for typical fluorescent cytoplasmic inclusions and were considered positive if one or more inclusions were present.

Enzyme immunoassay
The Generic Assay (Dahlewitz, Germany) used in the study is an enzymometric one-step immunoassay for the qualitative determination of rotavirus antigen employing a solid phase immobilized polyclonal antibody (sheep) and a murine monoclonal antibodies conjugated to horseradish peroxidase. Both antibodies are directed against the group specific VP6 antigen of group A rotaviruses. The assay was run according to the manufacturer’s instructions. Results were read spectrophotometrically.

Clinical scores
A Vesikari score was used for assessing the severity of the illness. Patients were analyzed for
watery diarrhoea, vomiting, fever and dehydration by the clinicians. A 0-20 point numerical score was devised according to the distribution of clinical features in the patients (Ruuska and Vesikari, 1990). Besides, clinical scores were divided in two subgroups; 1-10 points in the moderately severely ill group (Group I), and 11-20 points in the severely ill gastroenteritis group (Group II) (Joensuu et al., 1997).

**Statistics**
Sensitivity, specificity, positive and negative predictive values, diagnostic accuracy, student t-test and chi-square were calculated according to standard statistical procedures (SPSS v 13.0).

**RESULTS**
Among 219 stool samples tested, 107 (48.9%) were determined to be positive. Characteristics of children and prevalence of gastroenteritis in children are summarized in table 1. Rotavirus infection was found to be more predominant in children 3 weeks to 24 months than the 25-60 months group (p=0.013). No difference was detected according to sex (p=0.471).

Of the 219 stool specimens tested 105 were positive and 112 were negative by two assays. Seven specimens which were ELISA positive with low OD values were negative by shell vial cell culture. These specimens were retested by ELISA and found to be negative. Other bacterial pathogens were not detected in these specimens. Two specimens were positive by shell vial cell culture method while they were ELISA negative. Clinical scores of these patients were 12 and 14. According to these results the calculated sensitivity, specificity, PPV, NPV, and diagnostic accuracy of ELISA were 98.1%, 100%, 100%, 98.2%, and 99.0% respectively (Table 2). Microscopic examinations of 185 specimens were found to be normal. Thirty-four (15.5%) stool specimens had leucocytes and/or erythrocytes. Twenty-six of the 34 specimens had only leucocytes, seven had both leucocytes and erythrocytes, and the remaining one had only erythrocytes by microscopic examination. Three (1.4%) of 219 stool specimens were *Salmonella enteritis*, *Shigella flexneri* or *Shigella dysenteriae* culture positive by routine diagnostic methods. Rotavirus was not detected in these specimens. Of the 107 rotavirus positive specimens, seven (6.5%) had leucocytes and two (1.9%) had both leucocytes and erythrocytes.

Annual rotavirus gastroenteritis peak was detected between November and March. The month-

<table>
<thead>
<tr>
<th>TABLE 1 - Characteristics of the children and the prevalence of gastroenteritis.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age</strong></td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>3 weeks-24 months</td>
</tr>
<tr>
<td>25-60 months</td>
</tr>
<tr>
<td><strong>Sex</strong></td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2 - Comparison of ELISA and shell vial cell culture results.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Shell vial cell culture</strong></td>
</tr>
<tr>
<td>ELISA Positive</td>
</tr>
<tr>
<td>ELISA Negative</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
ly distribution confirmed the peak activity occurring in February (Figure 1). A 0-20 point numerical score (Vesikari) was devised according to the distribution of clinical features in the patients. Using this system, the mean severity score for the 107 episodes of rotavirus diarrhoea was 11.0±3.6 (10.3-11.7, 95% CI) compared to 4.5±1.9 (4.1-4.8 95% CI) for the 112 episodes of non-rotavirus diarrhoea in the same population (p = 0.000) (Figure 2). With regard to the clinical scores of the patients, 111 (99.1%) rotavirus negative patients were classified in group I and one patient (0.9%) in group II. Forty-six (43.0%) rotavirus positive patients were classified in group I while 61 (57.0%) of them were in group II (p=0.000) (Table 3).

DISCUSSION

This study detected rotavirus positivity in 48.9% (107/219) of the fecal specimens. The majority of the cases were in children younger than 24 months of age as indicated in previous studies (Kasule et al., 2003; Frühwirth et al., 2001). In contrast to Frühwirth et al. (2001) report, no difference was observed in rotavirus positivity according to sex. The shell vial enhanced centrifugation method achieved successful replacement of tube culture. Duration of rotavirus isolation was decreased by activating specimens in the presence of trypsin and staining with FITC conjugated antibody. In previous studies, African green monkey kidney cells were found to be more efficient for rotavirus isolation than continuous cell lines such as CaCo-2, MA104 (Bryden et al. 1977; Birch et al., 1983; Lipson and Zelinsky Papez, 1989; Christy et al., 1990; Lipson, 1992; Lipson et al., 2001). An advantage of shell vial cell culture methods is that they can be done individually. Virus isolation can be useful when low levels of infectious virus are suspected or when further work on the epidemiology or molecular biology...
of the isolates requires the generation of virus stocks. Shell vial enhanced centrifugation methods permit the establishment of a simple to perform, rapid, and sensitive isolation, for application in the important clinical disciplines of evaluation testing.

The results of the study indicate that ELISA is highly sensitive and specific (98.1%, 100%, respectively), but seven specimens were detected as false positives in the first run with low OD's and the clinical scores of the mentioned patients were 2 to 3. Retesting of these specimens gave negative results. A previous study reported that false positive results could be referred to cross reactivity with reovirus and/or with other components of the stool (5). This study did not test other gastroenteritis causing viruses that may cause cross reactivity. False positive results could also be obtained due to technical problems in manual ELISA. It is clear that specimens with low OD values should be retested by ELISA or tested with another method. At the same time, test results should be evaluated in relation to the clinical findings.

Another study showed that in regions with low prevalence (3.82%) of rotavirus, PPV (57.7%) of the ELISA decreased (Eing et al., 2001). By making use of likelihood ratios, it is possible to revise pretest probabilities (prevalance) of an illness and convert them into significant posttest probabilities (PPV). As the disease prevalence decreases in a population, the PPV falls and the NPV reciprocally rises (Fagan normogram) (Dawson-Saunders and Trapp, 1994; Giocoli, 2000). In our region, since rotavirus prevalence is quite high (Kurugol et al., 2003), antigen tests such as ELISA could be used safely.

Two cell culture positive specimens are not detected by ELISA. Most rotavirus laden specimens contain more than of $10^{10}$-$10^{11}$ particles per gram of stool at the first five days of the illness (Brooks et al., 2004, Lipson et al., 2001). In different studies on the rotavirus detection limits of different assays, it was demonstrated that ELISA detected $10^{6-7}$ and cell cultures detected $10^{4}$ particles/gram (Ward et al. 1984; Christy et al., 1990; Frühwirth et al., 2001). In our study, specimens were obtained in the first five days after the onset of symptoms.

Nine (8.4%) out of 107 rotavirus positive specimens had leucocytes and erythrocytes on microscopic examination and no pathogen was isolated in these specimens. Enteropathogens other than Escherichia coli, Shigella spp., Salmonella spp., Yersinia spp. and Campylobacter spp which are not in the spectrum of this study could be the causative agents in the mentioned patients.

Our study observed that rotavirus infection follows discard a seasonal pattern in our region, where it is associated with cooler temperatures from November to March reaching a peak in February. The seasonal distribution of rotavirus infection during the cooler months has been reported before (Ward et al., 1984).

The severity of rotavirus positive gastroenteritis was significantly higher than that of rotavirus negative patients ($11.0\pm3.6$ vs $4.5\pm1.9$, $p=0.000$). All of the patients with scores $12-19$ and $96\%$ (80/83) of the patients with clinical scores higher than 9 had rotavirus positivity. 99.1% of patients negative for rotavirus were in group 1. On the other hand, 46 patients (43.0%) in group 1 ($7.7\pm2.0$) were rotavirus positive, but the mean clinical scores of these patients were higher than rotavirus negative patients ($4.5\pm1.9$). A possible explanation for this may be admission of these patients to the hospital early in the course of illness. Similar results were observed in previous studies (Ruuska and Vesikari, 1990; Joensuu et al., 1997; Frühwirth et al., 2001).

A rapid diagnosis of rotavirus infection in patients admitted to hospital with symptoms of gas-

### TABLE 3 - Clinical scores of the children with rotavirus positive and negative results.

<table>
<thead>
<tr>
<th>Clinical scores</th>
<th>Group I</th>
<th>Group II</th>
<th>Total (chi-square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotavirus Positive</td>
<td>46</td>
<td>61</td>
<td>107/0.000</td>
</tr>
<tr>
<td>Negative</td>
<td>111</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>62</td>
<td>219</td>
</tr>
</tbody>
</table>

Detection of human rotavirus
Rotavirus infections. Methods, may in this setting be sufficiently sen-
form, faster and cheaper than cell culture
ments of the individual laboratory. Each labo-
ry should consider its needs on the basis of
patient population, prevalence of disease in the
region, pricing, and technical help to determine
what is best for its specific environment. Our
study indicates that ELISA, which is easier to
perform, faster and cheaper than cell culture
methods, may in this setting be sufficiently sen-
sitive and suitable for routine diagnosis of
rotavirus infections.

REFERENCES


BROOKS, G.F., BUTEL, J.S., MORSE, S.A. (2004). Reo-
viruses and caliciviruses, rotaviruses. In: Jawetz,
Melnick, Adelberg’s Medical Microbiology. Boston.
Landes Medical Book; 504-13.

BRYDEN, A.S., DAVIES, H.A., THOULESS, M.E., FLEWETT,
T.H. (1977). Diagnosis of rotavirus infection by cell

Comparison of three enzyme immunoassays to tissue-

and Clinical Biostatistics, 2nd Edition, Connecticut:
Paramount publishing business and professional
group, Appleton and Lange, 241-2.

EING, B.R., MAY, G., BAUMEISTER, H.G., KÜHN, J.E.
(2001). Evaluation of two enzyme immunoassays for
detection of human rotaviruses in fecal speci-

FRÜHWIRTH, M., KARMAUS, W., MÖLL-SCHÜLERM I.,
BRÖSL, S., MUTZ, I. (2001). A prospective evalua-
tion of community acquired gastroenteritis in pa-
ediatric practices: impact and disease burden of

GIOLINI, G. (2000). Evidence based clinical microbi-

GIORDANO, M.O., MARTINEZ, L.C., FERREYRA, L.J., ISA,
M.B., PAEZ REARTE, M., Pawan, J.V., NATES, S.V.
(2005). Discrepancies in viral gastroenteritis diag-
nosis: an unusual dual reovirus-adenovirus infec-

JOENSU, J., KOSKENNIEMI, E., PANG, X.L. (1997). A ran-
domised, double blind, placebo controlled trial of
rhescus-human reassortant rotavirus vaccine for pre-
vantion of severe rotavirus gastroenteritis. Lancet.
305: 1205-9.

KASILE, M., SEBUNYA, T.K., GASHE, B.A., ARMAH, G.,
of human rotavirus among children with diarrhoea in

KURUGOL, Z., GEYLANI, S., KARACA, Y., UMAZ, F.,
ERENSOY, S., VARDAR, F., BAK, M., YAPRAK, L.,
OZKINAY, F., OZKINAY, C. (2003). Rotavirus gas-
troenteritis among children under five years of age

trypsin activation and centrifugation-enhanced shell vial culture. In: Isenberg HD, editor. Clinical
microbiology procedures handbook, vol 2, Washing-
ton DC: American Society of Microbiology; 1-5.

LIPSON, S.M., SVENSSON, L., GOODWIN, L., PORTI, D.,
current generation enzyme immunoassays and an
improved isolation based assay for the rapid detec-
tion and isolation of rotavirus from stool. J. Clin.

Comparison of four latex agglutination and three
enzyme linked immunosorbent assays for the detec-
Pathol. 92: 637-43.


RABONI, S.M., NOGUERIA, M.B., HAKIM, V.M.,
TORGELNIHA, V.T., LERNER, H., TSUCHIY, L.R.V.
(2002). Comparison of latex agglutination with
enzyme immunoassay for detection of rotavirus in

RUUSA, T., VESIKAARI, T. (1990). Clinical Picture of
rotavirus disease in Finnish children. Use of
numerical scores for assessment of diarrheal


Efficiency of human rotavirus propagation in cell


WINN, W., ALLEN, S., JANDA, W., KONEMAN, E., PROCP,
Koneman Color Atlas and Textbook of Diagnostic
Microbiology. 6th ed. Philadelphia: Lippincott
Williams and Wilkins.